982
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Risk-based portfolio management of civil infrastructure assets under deep uncertainties associated with climate change: a robust optimisation approach

ORCID Icon & ORCID Icon
Pages 531-546 | Received 07 Feb 2019, Accepted 28 Jun 2019, Published online: 24 Jul 2019

References

  • Alipour, A., & Shafei, B. (2016). Seismic resilience of transportation networks with deteriorating components. Journal of Structural Engineering, 142(8), C4015015. doi:10.1061/(ASCE)ST.1943-541X.0001399
  • Ang, A. H.-S., & Tang, W. H. (2007). Probability concepts in engineering: Emphasis on applications in civil & environmental engineering. Hoboken, NJ: Wiley.
  • American Society of Civil Engineers (ASCE). (2017). Report Card for America’s Infrastructure. Reston, VA: Author. Retrieved from http://www.infrastructurereportcard.org.
  • Avent, R. R., & Alawady, M. (2005). Bridge scour and substructure deterioration: Case study. Journal of Bridge Engineering, 10(3), 247–254. doi:10.1061/(ASCE)1084-0702(2005)10:3(247)
  • Barone, G., & Frangopol, D. M. (2014). Reliability, risk and lifetime distributions as performance indicators for life-cycle maintenance of deteriorating structures. Reliability Engineering and System Safety, 123, 21–37. doi:10.1016/j.ress.2013.09.013
  • Bocchini, P., & Frangopol, D. M. (2011). A probabilistic computational framework for bridge network optimal maintenance scheduling. Reliability Engineering & System Safety, 96(2), 332–349. doi:10.1016/j.ress.2010.09.001
  • Bocchini, P., & Frangopol, D. M. (2013). Connectivity-based optimal scheduling for maintenance of bridge networks. Journal of Engineering Mechanics, 139(6), 760–769. doi:10.1061/(ASCE)EM.1943-7889.0000271
  • Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752. doi:10.1193/1.1623497
  • Chen, C., & Mangasarian, O. L. (1996). A class of smoothing functions for nonlinear and mixed complementarity problems. Computational Optimization and Applications, 5(2), 97–138. doi:10.1007/BF00249052
  • Clarke, R. M. (2000). Motor vehicle size and weight considerations. In Transportation in the new millennium (pp. 1–5). Washington, DC: Transportation Research Board.
  • Das, S. (2013). Assessment of uncertainty in flood flows under climate change impacts in the Upper Thames River Basin, Canada. British Journal of Environment and Climate Change, 2(4), 318–338. doi:10.9734/BJECC/2012/2813
  • Decò, A., & Frangopol, D. M. (2011). Risk assessment of highway bridges under multiple hazards. Journal of Risk Research, 14(9), 1057–1089. doi:10.1080/13669877.2011.571789
  • Dittrich, R., Wreford, A., & Moran, D. (2016). A survey of decision-making approaches for climate change adaptation: Are robust methods the way forward? Ecological Economics, 122, 79–89. doi:10.1016/j.ecolecon.2015.12.006
  • Dong, Y., Frangopol, D. M., & Sabatino, S. (2015). Optimizing bridge network retrofit planning based on cost-benefit evaluation and multi-attribute utility associated with sustainability. Earthquake Spectra, 31(4), 2255–2280. doi:10.1193/012214EQS015M
  • Dueñas-Osorio, L., & Vemuru, S. M. (2009). Cascading failures in complex infrastructure systems. Structural Safety, 31(2), 157–167. doi:10.1016/j.strusafe.2008.06.007
  • Ellingwood, B. R., Galambos, T. V., MacGregor, J. G., & Cornell, C. A. (1980). Development of a probability based load criterion for American National Standard A58: Building Code requirements for minimum design loads in buildings and other structures. Washington, DC: National Bureau of Standards. Retrieved from https://www.google.com/books?hl=en&lr=&id=KvchPLsPwZ8C&oi=fnd&pg=PA1&dq=ellingwood+1980&ots=m7OtkbOyG0&sig=NghZIbqMbbcePL_AiS5AUXDzMI4.
  • Ellingwood, B. R. (2005). Risk-informed condition assessment of civil infrastructure: state of practice and research issues. Structure and Infrastructure Engineering, 1(1), 7–18. doi:10.1080/15732470412331289341
  • Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M. (2007). Robust portfolio optimization and management. Hoboken, NJ: Wiley.
  • Frangopol, D. M. (1985). Sensitivity of reliability-based optimum design. Journal of Structural Engineering, ASCE, 111(8), 1703–1721. doi:10.1061/(ASCE)0733-9445(1985)111:8(1703).
  • Federal Highway Administration Website (FHWA). (1992). National Bridge Inventory (NBI). Federal Highway Administration Website. Retrieved from https://www.fhwa.dot.gov/bridge/nbi.cfm.
  • Frangopol, D. M. (2011). Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges. Structure and Infrastructure Engineering, 7(6), 389–413. doi:10.1080/15732471003594427
  • Frangopol, D. M., Dong, Y., & Sabatino, S. (2017). Bridge life-cycle performance and cost: analysis, prediction, optimisation and decision-making. Structure and Infrastructure Engineering, 13(10), 1239–1257. doi:10.1080/15732479.2016.1267772
  • Frangopol, D. M., Kong, J. S., & Gharaibeh, E. S. (2001). Reliability-based life-cycle management of highway bridges. ASCE Journal of Computing in Civil Engineering, 15(1), 27–34. doi:10.1061/(ASCE)0887-3801(2001)15:1(27)
  • Frangopol, D. M., Saydam, D., & Kim, S. (2012). Maintenance, management, life-cycle design and performance of structures and infrastructures: a brief review. Structure and Infrastructure Engineering, 8(1), 1–25. doi:10.1080/15732479.2011.628962
  • Furuta, H., Kameda, T., Fukuda, Y., & Frangopol, D. M. (2004). Life-cycle cost analysis for infrastructure systems: Life cycle cost vs. safety level vs. service life, in Life-Cycle Performance of Deteriorating Structures: Assessment, Design and Management, D. M. Frangopol, E. Brühwiler, M. H. Faber and B. Adey, eds., ASCE, 19–25.
  • Frangopol, D. M., & Soliman, M. (2016). Life-cycle of structural systems: recent achievements and future directions. Structure and Infrastructure Engineering, 12(1), 1–20. doi:10.1080/15732479.2014.999794
  • Ghosn, M. (2000). Development of truck weight redgulation using bridge reliability model. ASCE Journal of Bridge Engineering, 5(4), 293–303. doi:10.1061/(ASCE)1084-0702(2000)5:4(293)
  • Ghosn, M., Moses, F., & Frangopol, D. M. (2010). Redundancy and robustness of highway bridge superstructures and substructures. Structure and Infrastructure Engineering, 6(1–2), 257–278. doi:10.1080/15732470802664498.
  • Ghosn, M., Fiorillo, G., Gayovyy, V., Getso, T., Ahmed, S., & Parker, N. (2015). Effect of overweight vehicles on NYSDOT infrastructure. Technical Report NYSDOT C-08-13. Albany, NY: New York State Department of Transportation.
  • Gong, J., & You, F. (2018). Resilient design and operations of process systems: Nonlinear adaptive robust optimization model and algorithm for resilience analysis and enhancement. Computers & Chemical Engineering, 116, 231–252. doi:10.1016/j.compchemeng.2017.11.002.
  • Han, X., Yang, D. Y. & Frangopol, D. M., (2019a). Probabilistic life-cycle management framework for ship structures subjected to coupled corrosion-fatigue deterioration processes. Journal of Structural Engineering, ASCE, doi:10.1061/(ASCE)ST.1943-541X.0002406 (in press).
  • Han, X., Yang, D. Y. & Frangopol, D. M., (2019b). Time-variant reliability analysis of steel plates in marine environments considering pit nucleation and propagation. Probabilistic Engineering Mechanics, 57, 32–42.
  • Hall, J. W., Lempert, R. J., Keller, K., Hackbarth, A., Mijere, C., & Mcinerney, D. J. (2012). Robust climate policies under uncertainty: A comparison of robust decision making and info-gap methods. Risk Analysis, 32(10), 1657–1672. doi:10.1111/j.1539-6924.2012.01802.x
  • Hino, M., & Hall, J. W. (2017). Real options analysis of adaptation to changing flood risk: structural and nonstructural measures. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 3(3), 04017005. doi:10.1061/AJRUA6.0000905
  • Huang, Z., Rosowsky, D. V., & Sparks, P. R. (2001). Long-term hurricane risk assessment and expected damage to residential structures. Reliability Engineering & System Safety, 74(3), 239–249. doi:10.1016/S0951-8320(01)00086-2
  • Intergovernmental Panel on Climate Change (IPCC). (2014)., Climate change 2014: Synthesis report. Geneva, Switzerland: Author.
  • Johnson, P. A., & Niezgoda, S. L. (2004). Risk-based method for selecting bridge scour countermeasures. ASCE Journal of Hydraulic Engineering, 130(2), 121–128. doi:10.1061/(ASCE)0733-9429(2004)130:2(121)
  • Kay, A. L., Davies, H. N., Bell, V. A., & Jones, R. G. (2009). Comparison of uncertainty sources for climate change impacts: flood frequency in England. Climatic Change, 92(1–2), 41–63. doi:10.1007/s10584-008-9471-4
  • Kong, J. S., & Frangopol, D. M. (2005). Probabilistic optimization of aging structures considering maintenance and failure costs. Journal of Structural Engineering, 131(4), 600–616. doi:10.1061/(ASCE)0733-9445(2005)131:4(600)
  • Kuhn, K. D., & Madanat, S. M. (2005). Model uncertainty and the management of a system of infrastructure facilities. Transportation Research Part C: Emerging Technologies, 13(5–6), 391–404. doi:10.1016/j.trc.2006.02.001
  • Kuhn, K. D., & Madanat, S. M. (2006). Robust maintenance policies for Markovian systems under model uncertainty. Computer-Aided Civil and Infrastructure Engineering, 21(3), 171–178. doi:10.1111/j.1467-8667.2006.00425.x
  • Liu, M., & Frangopol, D. M. (2005). Bridge annual maintenance prioritization under uncertainty by multiobjective combinatorial optimization. Computer Aided Civil and Infrastructure Engineering, 21(3), 343–353. doi:10.1111/j.1467-8667.2005.00401.x.
  • Liu, L., Yang, D. Y. & Frangopol, D. M. (2019). Network-level risk-based framework for optimal bridge adaptation management considering scour and climate change. Journal of Infrastructure Systems, ASCE, doi:10.1061/(ASCE)IS.1943-555X.0000516 (in press).
  • Li, Q., Wang, C., & Zhang, H. (2016). A probabilistic framework for hurricane damage assessment considering non-stationarity and correlation in hurricane actions. Structural Safety, 59, 108–117. doi:10.1016/j.strusafe.2016.01.001
  • Liu, L., Frangopol, D. M., Mondoro, A., & Yang, D. Y. (2018). Sustainability-informed bridge ranking under scour based on transportation network performance and multi-attribute utility. Journal of Bridge Engineering, 23(10), 04018082. doi:10.1061/(ASCE)BE.1943-5592.0001296
  • Loomes, G., & Sugden, R. (1982). Regret theory: An alternative theory of rational choice under uncertainty. The Economic Journal, 92(368), 805–824. doi:10.2307/2232669
  • McInerney, D., Lempert, R., & Keller, K. (2012). What are robust strategies in the face of uncertain climate threshold responses? Robust climate strategies. Climatic Change, 112(3–4), 547–568. doi:10.1007/s10584-011-0377-1
  • McKinnon, A. C. (2005). The economic and environmental benefits of increasing maximum truck weight: The British experience. Transportation Research Part D: Transport and Environment, 10(1), 77–95. doi:10.1016/j.trd.2004.09.006
  • Mertz, D. R. (2005). Load rating by load and resistance factor evaluation method. Technical Report NHCRP Project No. 20-07. Washington, DC: Transportation Research Board.
  • Mondoro, A., Frangopol, D. M., & Liu, L. (2018a). Bridge adaptation and management under climate change uncertainties: A review. Natural Hazards Review, 19(1), 04017023. doi:10.1061/(ASCE)NH.1527-6996.0000270
  • Mondoro, A., Frangopol, D. M., & Liu, L. (2018b). Multi-criteria robust optimization framework for bridge adaptation under climate change. Structural Safety, 74, 14–23 doi:10.1016/j.strusafe.2018.03.002
  • Mori, Y., & Ellingwood, B. R. (1993). Methodology for reliability based condition assessment: Application to concrete structures in nuclear plants (No. NUREG/CR-6052; ORNL/Sub-93-SD684). Washington, DC.
  • Ouyang, M. (2014). Review on modeling and simulation of interdependent critical infrastructure systems. Reliability Engineering & System Safety, 121, 43–60. doi:10.1016/j.ress.2013.06.040
  • Padgett, J. E., Dennemann, K., & Ghosh, J. (2010). Risk-based seismic life-cycle cost–benefit (LCC-B) analysis for bridge retrofit assessment. Structural Safety, 32(3), 165–173. doi:10.1016/j.strusafe.2009.10.003
  • Powell, M. J. D. (1994). A direct search optimization method that models the objective and constraint functions by linear interpolation. In Advances in optimization and numerical analysis (pp. 51–67). Dordrecht: Springer. doi:10.1007/978-94-015-8330-5_4.
  • Sabatino, S., Frangopol, D. M., & Dong, Y. (2016). Life cycle utility-informed maintenance planning based on lifetime functions: optimum balancing of cost, failure consequences and performance benefit. Structure and Infrastructure Engineering, 12(7), 830–847. doi:10.1080/15732479.2015.1064968
  • Saydam, D., Bocchini, P., & Frangopol, D. M. (2013). Time-dependent risk associated with deterioration of highway bridge networks. Engineering Structures, 54, 221–233. doi:10.1016/j.engstruct.2013.04.009
  • Stewart, M. G., & Melchers, R. E. (1997). Probabilistic risk assessment of engineering systems, London: Chapman & Hall.
  • Stewart, M. G., Wang, X., & Nguyen, M. N. (2011). Climate change impact and risks of concrete infrastructure deterioration. Engineering Structures, 33(4), 1326–1337. doi:10.1016/j.engstruct.2011.01.010
  • Stewart, M. G., Wang, X., & Nguyen, M. N. (2012). Climate change adaptation for corrosion control of concrete infrastructure. Structural Safety, 35, 29–39. doi:10.1016/j.strusafe.2011.10.002
  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498. doi:10.1175/BAMS-D-11-00094.1
  • US Environmental Protection Agency (2016). Climate change indicators in the United States 2016 (EPA-430-R-16-004) (4th ed.). Washington, DC: Author. Retrieved from www.epa.gov/climate-indicators.
  • Val, D. V., Stewart, M. G., & Melchers, R. E. (1998). Effect of reinforcement corrosion on reliability of highway bridges. Engineering Structures, 20(11), 1010–1019. doi:10.1016/S0141-0296(97)00197-1
  • Wald, A. (1949). Statistical decision functions. The Annals of Mathematical Statistics, 20(2), 165–205. doi:10.1214/aoms/1177730030
  • Walker, W. E., Haasnoot, M., & Kwakkel, J. H. (2013). Adapt or perish: A review of planning approaches for adaptation under deep uncertainty. Sustainability (Switzerland), 5(3), 955–979. doi:10.3390/su5030955
  • Xue, X., Wang, N., Ellingwood, B. R., & Zhang, K. (2017). The impact of climate change on riverine flooding at a community scale. In C. G. Bucher, B. R. Ellingwood, & D. M. Frangopol (eds). Proceedings of the 12th International Conference on Structural Safety & Reliability (ICOSSAR 2017) (pp. 2114–2121). Vienna, Austria: TU Verlag Vienna.
  • Yang, D. Y., & Frangopol, D. M. (2018a). Hazard analysis for bridge scour evaluation at watershed level considering climate change impacts. In Proceedings of the Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE 2018). Ghent, Belgium: CRC Press.
  • Yang, D. Y., & Frangopol, D. M. (2018b). Risk-informed bridge ranking at project and network levels. Journal of Infrastructure Systems, ASCE, 24(3): 04018018. doi: 10.1061/(ASCE)IS.1943-555X.0000430
  • Yang, D. Y., & Frangopol, D. M. (2019). Physics-based assessment of climate change impact on long-term regional bridge scour risk using hydrologic modeling: Application to Lehigh River Watershed. ASCE Journal of Bridge Engineering, doi:10.1061/(ASCE)BE.1943-5592.0001462. (in press)
  • Zhu, B., & Frangopol, D. M. (2012). Reliability, redundancy and risk as performance indicators of structural systems during their life-cycle. Engineering Structures, 41, 34–49. doi:10.1016/j.engstruct.2012.03.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.