Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 15, 2019 - Issue 12
2,152
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Multihazard resilience of highway bridges and bridge networks: a review

, &
Pages 1694-1714 | Received 01 Oct 2018, Accepted 28 Mar 2019, Published online: 09 Aug 2019

References

  • AASHTO. (2007). Maintenance manual for roadways and bridges. Washington, DC: American Association of State Highway Association.
  • Akiyama, M., & Frangopol, D. M. (2014). Long-term seismic performance of RC structures in an aggressive environment: Emphasis on bridge piers. Structure and Infrastructure Engineering, 10(7), 865–879. doi:10.1080/15732479.2012.761246
  • Akiyama, M., Frangopol, D. M., & Matsuzaki, H. (2011). Life‐cycle reliability of RC bridge piers under seismic and airborne chloride hazards. Earthquake Engineering & Structural Dynamics, 40(15), 1671–1687. doi:10.1002/eqe.1108
  • Akiyama, M., Frangopol, D. M., Arai, M., & Koshimura, S. (2013). Reliability of bridges under tsunami hazards: Emphasis on the 2011 Tohoku-oki earthquake. Earthquake Spectra, 29(s1), S295–S314. doi:10.1193/1.4000112
  • Alessandri, S., Giannini, R., & Paolacci, F. (2013). Aftershock risk assessment and the decision to open traffic on bridges. Earthquake Engineering & Structural Dynamics, 42(15), 2255–2275. doi:10.1002/eqe.2324
  • Alipour, A., & Shafei, B. (2016). Seismic resilience of transportation networks with deteriorating components. Journal of Structural Engineering, 142(8), C4015015. doi:10.1061/(ASCE)ST.1943-541X.0001399
  • Alipour, A., Shafei, B., & Shinozuka, M. (2011). Performance evaluation of deteriorating highway bridges located in high seismic areas. Journal of Bridge Engineering, 16(5), 597–611. doi:10.1061/(ASCE)BE.1943-5592.0000197
  • Alipour, A., Shafei, B., & Shinozuka, M. (2013). Reliability-based calibration of load and resistance factors for design of RC bridges under multiple extreme events: Scour and earthquake. Journal of Bridge Engineering, 18(5), 362–371. doi:10.1061/(ASCE)BE.1943-5592.0000369
  • Anarde, K. A., Kameshwar, S., Irza, J. N., Nittrouer, J. A., Lorenzo-Trueba, J., Padgett, J. E., Sebastian, A., & Bedient, P. B. (2018). Impacts of hurricane storm surge on infrastructure vulnerability for an evolving coastal landscape. Natural Hazards Review, 19(1), 04017020. doi:10.1061/(ASCE)NH.1527-6996.0000265
  • Andrić, J. M., & Lu, D. G. (2017). Fuzzy methods for prediction of seismic resilience of bridges. International Journal of Disaster Risk Reduction, 22, 458–468. doi:10.1016/j.ijdrr.2017.01.001
  • Assaf, D., & Shanthikumar, J. G. (1987). Optimal group maintenance policies with continuous and periodic inspections. Management Science, 33(11), 1440–1452. doi:10.1287/mnsc.33.11.1440
  • Ataei, N., & Padgett, J. E. (2013). Limit state capacities for global performance assessment of bridges exposed to hurricane surge and wave. Structural Safety, 41, 73–81. doi:10.1016/j.strusafe.2012.10.005
  • Ataei, N., & Padgett, J. E. (2015a). Fragility surrogate models for coastal bridges in hurricane prone zones. Engineering Structures, 103, 203–213. doi:10.1016/j.engstruct.2015.07.002
  • Ataei, N., & Padgett, J. E. (2015b). Influential fluid–structure interaction modelling parameters on the response of bridges vulnerable to coastal storms. Structure and Infrastructure Engineering, 11(3), 321–333. doi:10.1080/15732479.2013.879602
  • Ataei, N., Stearns, M., & Padgett, J. E. (2010). Response sensitivity for probabilistic damage assessment of coastal bridges under surge and wave loading. Transportation Research Record: Journal of the Transportation Research Board, 2202(1), 93–101. doi:10.3141/2202-12
  • ATC. (1985). Earthquake damage evaluation data for California. Applied Technology Council, Redwood city, California.
  • Aven, T., & Jensen, U. (1999). Stochastic models in reliability (p. 113). New York: Springer.
  • Aygün, B., Dueñas-Osorio, L., Padgett, J. E., & DesRoches, R. (2011). Efficient longitudinal seismic fragility assessment of a multispan continuous steel bridge on liquefiable soils. Journal of Bridge Engineering, 16(1), 93–107. doi:10.1061/(ASCE)BE.1943-5592.0000131
  • Banerjee, S., & Ganesh Prasad, G. (2013). Seismic risk assessment of reinforced concrete bridges in flood-prone regions. Structure and Infrastructure Engineering, 9(9), 952–968. doi:10.1080/15732479.2011.649292
  • Barlow, R. E., & Proschan, F. (1965). Mathematical theory of reliability. New York: Wiley.
  • Barlow, R., & Hunter, L. (1960). Optimum preventive maintenance policies. Operations Research, 8(1), 90–100. doi:10.1287/opre.8.1.90
  • Barone, G., & Frangopol, D. M. (2014). Life-cycle maintenance of deteriorating structures by multi-objective optimization involving reliability, risk, availability, hazard and cost. Structural Safety, 48, 40–50. doi:10.1016/j.strusafe.2014.02.002
  • Barone, G., Frangopol, D. M., & Soliman, M. (2014). Optimization of life-cycle maintenance of deteriorating bridges with respect to expected annual system failure rate and expected cumulative cost. Journal of Structural Engineering, 140(2), 04013043. doi:10.1061/(ASCE)ST.1943-541X.0000812
  • Berg, M. (1976). A proof of optimality for age replacement policies. Journal of Applied Probability, 13(4), 751–759. doi:10.2307/3212530
  • Bergström, J., van Winsen, R., & Henriqson, E. (2015). On the rationale of resilience in the domain of safety: A literature review. Reliability Engineering & System Safety, 141, 131–141. doi:10.1016/j.ress.2015.03.008
  • Biondini, F., Camnasio, E., & Palermo, A. (2014). Lifetime seismic performance of concrete bridges exposed to corrosion. Structure and Infrastructure Engineering, 10(7), 880–900. doi:10.1080/15732479.2012.761248
  • Biondini, F., Camnasio, E., & Titi, A. (2015). Seismic resilience of concrete structures under corrosion. Earthquake Engineering & Structural Dynamics, 44(14), 2445–2466. doi:10.1002/eqe.2591
  • Block, H. W., Langberg, N. A., & Savits, T. H. (1993). Repair replacement policies. Journal of Applied Probability, 30(1), 194–206. doi:10.2307/3214632
  • Bocchini, P., & Frangopol, D. M. (2012a). Restoration of bridge networks after an earthquake: Multicriteria intervention optimization. Earthquake Spectra, 28(2), 426–455. doi:10.1193/1.4000019
  • Bocchini, P., & Frangopol, D. M. (2012b). Optimal resilience-and cost-based postdisaster intervention prioritization for bridges along a highway segment. Journal of Bridge Engineering, 17(1), 117–129. doi:10.1061/(ASCE)BE.1943-5592.0000201
  • Bocchini, P., Frangopol, D. M., Ummenhofer, T., & Zinke, T. (2014). Resilience and sustainability of civil infrastructure: Toward a unified approach. Journal of Infrastructure Systems, 20(2), 04014004. doi:10.1061/(ASCE)IS.1943-555X.0000177
  • Bozza, A., Asprone, D., & Fabbrocino, F. (2017). Urban resilience: A civil engineering perspective. Sustainability, 9(1), 103. doi:10.3390/su9010103
  • Bruneau, M., Barbato, M., Padgett, J. E., Zaghi, A. E., Mitrani-Reiser, J., & Li, Y. (2017). State of the art of multihazard design. Journal of Structural Engineering, 143(10), 03117002. doi:10.1061/(ASCE)ST.1943-541X.0001893
  • Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752. doi:10.1193/1.1623497
  • Calvert, S. C., & Snelder, M. (2018). A methodology for road traffic resilience analysis and review of related concepts. Transportmetrica A: Transport Science, 14(1-2), 130–154. doi:10.1080/23249935.2017.1363315
  • Canfield, R. V. (1986). Cost optimization of periodic preventive maintenance. IEEE Transactions on Reliability, 35(1), 78–81. doi:10.1109/TR.1986.4335355
  • Chandrasekaran, S., & Banerjee, S. (2016). Retrofit optimization for resilience enhancement of bridges under multihazard scenario. Journal of Structural Engineering, 142(8), C4015012. doi:10.1061/(ASCE)ST.1943-541X.0001396
  • Chang, K. C., Sung, Y. C., Liu, K. Y., Wang, P. H., Lee, Z. K., & Lee, L. S. (2014). Seismic performance of an existing bridge with scoured caisson foundation. Earthquake Engineering and Engineering Vibration, 13(1), 151–165.
  • Chiu, C. K., & Arista, C. P. (2017). Serviceability-related reliability for mainshock-damaged reinforced concrete piers considering the aftershock-induced seismic hazards. Natural Hazards, 87(3), 1333–1359. doi:10.1007/s11069-017-2820-8
  • Chiu, C. K., Liao, I. H., & Jean, W. Y. (2018). Seismic design requirements for reinforced concrete piers considering aftershock-induced seismic hazard. Structure and Infrastructure Engineering, 14(9), 1244–1256. doi:10.1080/15732479.2017.1418009
  • Cho, D. I., & Parlar, M. (1991). A survey of maintenance models for multi-unit systems. European Journal of Operational Research, 51(1), 1–23. doi:10.1016/0377-2217(91)90141-H
  • Choe, D. E., Gardoni, P., Rosowsky, D., & Haukaas, T. (2009). Seismic fragility estimates for reinforced concrete bridges subject to corrosion. Structural Safety, 31(4), 275–283. doi:10.1016/j.strusafe.2008.10.001
  • Choe, D. E., Gardoni, P., & Rosowsky, D. (2010). Fragility increment functions for deteriorating reinforced concrete bridge columns. Journal of Engineering Mechanics, 136(8), 969–978. doi:10.1061/(ASCE)EM.1943-7889.0000147
  • Choine, M. N., O’Connor, A., & Padgett, J. E. (2013). A seismic reliability assessment of reinforced concrete integral bridges subject to corrosion. Key Engineering Materials, 569, 366–373. doi:10.4028/www.scientific.net/KEM.569-570.366
  • Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010). Framework for analytical quantification of disaster resilience. Engineering Structures, 32(11), 3639–3649. doi:10.1016/j.engstruct.2010.08.008
  • Cutter, S. L., Ahearn, J. A., Amadei, B., Crawford, P., Eide, E. A., Galloway, G. E., … Scrimshaw, S. C. (2013). Disaster resilience: A national imperative. Environment: Science and Policy for Sustainable Development, 55(2), 25–29. doi:10.1080/00139157.2013.768076
  • Decò, A., & Frangopol, D. M. (2011). Risk assessment of highway bridges under multiple hazards. Journal of Risk Research, 14(9), 1057–1089. doi:10.1080/13669877.2011.571789
  • Decò, A., & Frangopol, D. M. (2013). Life-cycle risk assessment of spatially distributed aging bridges under seismic and traffic hazards. Earthquake Spectra, 29(1), 127–153. doi:10.1193/1.4000094
  • Decò, A., Bocchini, P., & Frangopol, D. M. (2013). A probabilistic approach for the prediction of seismic resilience of bridges. Earthquake Engineering & Structural Dynamics, 42(10), 1469–1487. doi:10.1002/eqe.2282
  • Dohi, T., Kaio, N., & Osaki, S. (2000). Basic preventive maintenance policies and their variations. In Maintenance, modeling and optimization (pp. 155–183). Boston, MA: Springer.
  • Domaneschi, M., & Martinelli, L. (2016). Earthquake-resilience-based control solutions for the extended benchmark cable-stayed bridge. Journal of Structural Engineering, 142(8), C4015009. doi:10.1061/(ASCE)ST.1943-541X.0001392
  • Dong, Y., & Frangopol, D. M. (2015). Risk and resilience assessment of bridges under mainshock and aftershocks incorporating uncertainties. Engineering Structures, 83, 198–208. doi:10.1016/j.engstruct.2014.10.050
  • Dong, Y., & Frangopol, D. M. (2016). Probabilistic time-dependent multihazard life-cycle assessment and resilience of bridges considering climate change. Journal of Performance of Constructed Facilities, 30(5), 04016034. doi:10.1061/(ASCE)CF.1943-5509.0000883
  • Dong, Y., Frangopol, D. M., & Saydam, D. (2013). Time‐variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthquake Engineering & Structural Dynamics, 42(10), 1451–1467. doi:10.1002/eqe.2281
  • Doorn, N. (2017). Resilience indicators: opportunities for including distributive justice concerns in disaster management. Journal of Risk Research, 20(6), 711–731. doi:10.1080/13669877.2015.1100662
  • EEFIT (2005). The Bhuj, India Earthquake of 26th January 2001, Earthquake Engineering Field Investigation Team, Institution of Structural Engineers, London. Retrieved from https://www.istructe.org/downloads/resources-centre/technical-topic-area/eefit/eefit-reports/bhuj-india.pdf
  • Enright, M. P., & Frangopol, D. M. (1999). Maintenance planning for deteriorating concrete bridges. Journal of Structural Engineering, 125(12), 1407–1414. doi:10.1061/(ASCE)0733-9445(1999)125:12(1407)
  • Estes, A. C. (1997). A system reliability approach to the lifetime optimization of inspection and repair of highway bridges (PhD Thesis). Department of Civil Environmental and Architectural Engineering, Colorado University at Boulder.
  • Estes, A. C., & Frangopol, D. M. (2003). Updating bridge reliability based on bridge management systems visual inspection results. Journal of Bridge Engineering, 8(6), 374–382. doi:10.1061/(ASCE)1084-0702(2003)8:6(374)
  • Fakharifar, M., Chen, G., Sneed, L., & Dalvand, A. (2015). Seismic performance of post-mainshock FRP/steel repaired RC bridge columns subjected to aftershocks. Composites Part B: Engineering, 72, 183–198. doi:10.1016/j.compositesb.2014.12.010
  • Faturechi, R., & Miller-Hooks, E. (2015). Measuring the performance of transportation infrastructure systems in disasters: A comprehensive review. Journal of Infrastructure Systems, 21(1), 04014025. doi:10.1061/(ASCE)IS.1943-555X.0000212
  • Franchin, P., & Cavalieri, F. (2015). Probabilistic assessment of civil infrastructure resilience to earthquakes. Computer-Aided Civil and Infrastructure Engineering, 30(7), 583–600. doi:10.1111/mice.12092
  • Franchin, P., & Pinto, P. E. (2009). Allowing traffic over mainshock-damaged bridges. Journal of Earthquake Engineering, 13(5), 585–599. doi:10.1080/13632460802421326
  • Frangopol, D. M. (2011). Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges. Structure and Infrastructure Engineering, 7(6), 389–413. doi:10.1080/15732471003594427
  • Frangopol, D. M., & Bocchini, P. (2011). Resilience as optimization criterion for the rehabilitation of bridges belonging to a transportation network subject to earthquake. In Structures Congress, 2011, 2044–2055.
  • Froehlich, D. C., & Fisher, P. F. (2000). Storm surge scour at coastal bridges: documenting the effects of hurricanes Bonnie and Floyd in North Carolina. Joint Conference on Water Resource Engineering and Water Resources Planning and Management, July 30-August 2, Minneapolis, US.
  • Gardoni, P., & Rosowsky, D. (2011). Seismic fragility increment functions for deteriorating reinforced concrete bridges. Structure and Infrastructure Engineering, 7(11), 869–879. doi:10.1080/15732470903071338
  • Ganesh Prasad, G., & Banerjee, S. (2013). The impact of flood-induced scour on seismic fragility characteristics of bridges. Journal of Earthquake Engineering, 17(6), 803–828. doi:10.1080/13632469.2013.771593
  • Gay, L. F., & Sinha, S. K. (2013). Resilience of civil infrastructure systems: literature review for improved asset management. International Journal of Critical Infrastructures, 9(4), 330–350. doi:10.1504/IJCIS.2013.058172
  • Geckle, D., & Goetz, B. (2015). Rehabilitation of the Anthony Wayne Suspension Bridge [Powerpoint Slides]. Retrieved from http://www.dot.state.oh.us/engineering/OTEC/2015_OTEC_Presentations/Tuesday_Oct.27/38/Geckle_38.pdf
  • Gehl, P., & D’Ayala, D. (2016). Development of Bayesian Networks for the multi-hazard fragility assessment of bridge systems. Structural Safety, 60, 37–46. doi:10.1016/j.strusafe.2016.01.006
  • Ghosh, J., & Padgett, J. E. (2010). Aging considerations in the development of time-dependent seismic fragility curves. Journal of Structural Engineering, 136(12), 1497–1511. doi:10.1061/(ASCE)ST.1943-541X.0000260
  • Ghosh, J., & Padgett, J. E. (2011). Probabilistic seismic loss assessment of aging bridges using a component‐level cost estimation approach. Earthquake Engineering & Structural Dynamics, 40(15), 1743–1761. doi:10.1002/eqe.1114
  • Ghosh, J., & Sood, P. (2016). Consideration of time-evolving capacity distributions and improved degradation models for seismic fragility assessment of aging highway bridges. Reliability Engineering & System Safety, 154, 197–218. doi:10.1016/j.ress.2016.06.001
  • Ghosh, J., Caprani, C. C., & Padgett, J. E. (2014). Influence of traffic loading on the seismic reliability assessment of highway bridge structures. Journal of Bridge Engineering, 19(3), 04013009. doi:10.1061/(ASCE)BE.1943-5592.0000535
  • Ghosh, J., Rokneddin, K., Padgett, J. E., & Dueñas-Osorio, L. (2014). Seismic reliability assessment of aging highway bridge networks with field instrumentation data and correlated failures, I: methodology. Earthquake Spectra, 30(2), 795–817. doi:10.1193/040512EQS155M
  • Ghosh, J., Padgett, J. E., & Sánchez-Silva, M. (2015). Seismic damage accumulation in highway bridges in earthquake-prone regions. Earthquake Spectra, 31(1), 115–135. doi:10.1193/120812EQS347M
  • Gidaris, I., Padgett, J. E., Barbosa, A. R., Chen, S., Cox, D., Webb, B., & Cerato, A. (2017). Multiple-hazard fragility and restoration models of highway bridges for regional risk and resilience assessment in the United States: state-of-the-art review. Journal of Structural Engineering, 143(3), 04016188. doi:10.1061/(ASCE)ST.1943-541X.0001672
  • Gill, J. C., & Malamud, B. D. (2014). Reviewing and visualizing the interactions of natural hazards. Reviews of Geophysics, 52(4), 680–722. doi:10.1002/2013RG000445
  • Guillaumot, V. M., Durango-Cohen, P. L., & Madanat, S. M. (2003). Adaptive optimization of infrastructure maintenance and inspection decisions under performance model uncertainty. Journal of Infrastructure Systems, 9(4), 133–139. doi:10.1061/(ASCE)1076-0342(2003)9:4(133)
  • Guo, X., & Chen, Z. (2016). Lifecycle multihazard framework for assessing flood scour and earthquake effects on bridge failure. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2(2), C4015004. doi:10.1061/AJRUA6.0000844
  • Guo, X., Wu, Y., & Guo, Y. (2016). Time-dependent seismic fragility analysis of bridge systems under scour hazard and earthquake loads. Engineering Structures, 121, 52–60. doi:10.1016/j.engstruct.2016.04.038
  • Hajializadeh, D., Stewart, M. G., Enright, B., & OBrien, E. (2016). Spatial time-dependent reliability analysis of reinforced concrete slab bridges subject to realistic traffic loading. Structure and Infrastructure Engineering, 12(9), 1137–1152. doi:10.1080/15732479.2015.1086385
  • Han, Z., Ye, A., & Fan, L. (2010). Effects of riverbed scour on seismic performance of high-rise pile cap foundation. Earthquake Engineering and Engineering Vibration, 9(4), 533–543. doi:10.1007/s11803-010-0035-z
  • HAZUS-MH. (2004). Multi-hazard loss estimation methodology: Earthquake model. Department of Homeland Security, FEMA, Washington, DC.
  • Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1), 1–23. doi:10.1146/annurev.es.04.110173.000245
  • Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. (2016). A review of definitions and measures of system resilience. Reliability Engineering & System Safety, 145, 47–61. doi:10.1016/j.ress.2015.08.006
  • Hu, X., Daganzo, C., & Madanat, S. (2015). A reliability-based optimization scheme for maintenance management in large-scale bridge networks. Transportation Research Part C: Emerging Technologies, 55, 166–178. doi:10.1016/j.trc.2015.01.008
  • Ikpong, A., & Bagchi, A. (2015). New method for climate change resilience rating of highway bridges. Journal of Cold Regions Engineering, 29(3), 04014013. doi:10.1061/(ASCE)CR.1943-5495.0000079
  • Jia, G., Tabandeh, A., & Gardoni, P. (2017). Life-cycle analysis of engineering systems: Modeling deterioration, instantaneous reliability, and resilience. In Risk and reliability analysis: Theory and applications (pp. 465–494). Cham: Springer.
  • Johansen, C., Horney, J., & Tien, I. (2017). Metrics for evaluating and improving community resilience. Journal of Infrastructure Systems, 23(2), 04016032. doi:10.1061/(ASCE)IS.1943-555X.0000329
  • Kameshwar, S., & Padgett, J. E. (2014). Multi-hazard risk assessment of highway bridges subjected to earthquake and hurricane hazards. Engineering Structures, 78, 154–166. doi:10.1016/j.engstruct.2014.05.016
  • Kameshwar, S., & Padgett, J. E. (2018a). Effect of vehicle bridge interaction on seismic response and fragility of bridges. Earthquake Engineering & Structural Dynamics, 47(3), 697–713. doi:10.1002/eqe.2986
  • Kameshwar, S., & Padgett, J. E. (2018b). Parameterized fragility assessment of bridges subjected to pier scour and vehicular loads. Journal of Bridge Engineering, 23(7), 04018044. doi:10.1061/(ASCE)BE.1943-5592.0001240
  • Kameshwar, S., & Padgett, J. E. (2018c). Response and fragility assessment of bridge columns subjected to barge-bridge collision and scour. Engineering Structures, 168, 308–319. doi:10.1016/j.engstruct.2018.04.082
  • Karamlou, A., & Bocchini, P. (2015). Computation of bridge seismic fragility by large‐scale simulation for probabilistic resilience analysis. Earthquake Engineering & Structural Dynamics, 44(12), 1959–1978. doi:10.1002/eqe.2567
  • Karamlou, A., & Bocchini, P. (2016). Sequencing algorithm with multiple-input genetic operators: Application to disaster resilience. Engineering Structures, 117, 591–602. doi:10.1016/j.engstruct.2016.03.038
  • Kezhiyur, A. J., Banerjee, S., Shankar, V., & Basu, P. (2016). Age-Dependent Seismic Resilience of an Aging Bridge Network. Transportation Research Board 2016. Proceedings of TRB 95th Annual Meeting of Transportation Research Board (pp. 16–0632). Washington DC.
  • Kim, S., & Frangopol, D. M. (2012). Probabilistic bicriterion optimum inspection/monitoring planning: applications to naval ships and bridges under fatigue. Structure and Infrastructure Engineering, 8(10), 912–927. doi:10.1080/15732479.2011.574811
  • Kim, S., Frangopol, D. M., & Zhu, B. (2011). Probabilistic optimum inspection/repair planning to extend lifetime of deteriorating structures. Journal of Performance of Constructed Facilities, 25(6), 534–544. doi:10.1061/(ASCE)CF.1943-5509.0000197
  • Kim, S., Frangopol, D. M., & Soliman, M. (2013). Generalized probabilistic framework for optimum inspection and maintenance planning. Journal of Structural Engineering, 139(3), 435–447. doi:10.1061/(ASCE)ST.1943-541X.0000676
  • Kleiner, Y. (2001). Scheduling inspection and renewal of large infrastructure assets. Journal of Infrastructure Systems, 7(4), 136–143. doi:10.1061/(ASCE)1076-0342(2001)7:4(136)
  • Koliou, M., van de Lindt, J. W., McAllister, T. P., Ellingwood, B. R., Dillard, M., & Cutler, H. (2018). State of the research in community resilience: progress and challenges. Sustainable and Resilient Infrastructure, Published online. doi:10.1080/23789689.2017.1418547
  • Kong, J. S., & Frangopol, D. M. (2005). Probabilistic optimization of aging structures considering maintenance and failure costs. Journal of Structural Engineering, 131(4), 600–616. doi:10.1061/(ASCE)0733-9445(2005)131:4(600)
  • Kumar, R., Gardoni, P., & Sanchez‐Silva, M. (2009). Effect of cumulative seismic damage and corrosion on the life‐cycle cost of reinforced concrete bridges. Earthquake Engineering & Structural Dynamics, 38(7), 887–905. doi:10.1002/eqe.873
  • Liu, M., & Frangopol, D. M. (2005a). Bridge annual maintenance prioritization under uncertainty by multiobjective combinatorial optimization. Computer-Aided Civil and Infrastructure Engineering, 20(5), 343–353. doi:10.1111/j.1467-8667.2005.00401.x
  • Liu, M., & Frangopol, D. M. (2005b). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842. doi:10.1061/(ASCE)0733-9445(2005)131:5(833)
  • Liu, M., & Frangopol, D. M. (2005c). Balancing connectivity of deteriorating bridge networks and long-term maintenance cost through optimization. Journal of Bridge Engineering, 10(4), 468–481. doi:10.1061/(ASCE)1084-0702(2005)10:4(468)
  • Liu, M., & Frangopol, D. M. (2006). Optimizing bridge network maintenance management under uncertainty with conflicting criteria: Life-cycle maintenance, failure, and user costs. Journal of Structural Engineering, 132(11), 1835–1845. doi:10.1061/(ASCE)0733-9445(2006)132:11(1835)
  • Liu, X. G., Makis, V., & Jardine, A. K. (1995). A replacement model with overhauls and repairs. Naval Research Logistics (Logistics), 42(7), 1063–1079. doi:10.1002/1520-6750(199510)42:7<1063::AID-NAV3220420706>3.0.CO;2-3
  • Mackie, K. R., Kucukvar, M., Tatari, O., & Elgamal, A. (2016). Sustainability metrics for performance-based seismic bridge response. Journal of Structural Engineering, 142(8), C4015001. doi:10.1061/(ASCE)ST.1943-541X.0001287
  • Makiš, V., & Jardine, A. K. (1991). Optimal replacement of a system with imperfect repair. Microelectronics Reliability, 31(2-3), 381–388. doi:10.1016/0026-2714(91)90225-V
  • Mander, J. B. (1999). Fragility curve development for assessing the seismic vulnerability of highway bridges. Technical Report, Research Progress and Accomplishment, 89, MCEER Highway Project/FHWA.
  • Mangalathu, S., Heo, G., & Jeon, J. S. (2018). Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes. Engineering Structures, 162, 166–176. doi:10.1016/j.engstruct.2018.01.053
  • Mangalathu, S., Jeon, J. S., & DesRoches, R. (2018). Critical uncertainty parameters influencing seismic performance of bridges using Lasso regression. Earthquake Engineering & Structural Dynamics, 47(3), 784–801. doi:10.1002/eqe.2991
  • Markolf, S. A., Hoehne, C., Fraser, A., Chester, M. V., & Underwood, B. S. (2019). Transportation resilience to climate change and extreme weather events–Beyond risk and robustness. Transport Policy, 74, 174–186. doi:10.1016/j.tranpol.2018.11.003
  • Minaie, E., & Moon, F. (2017). Practical and Simplified Approach for Quantifying Bridge Resilience. Journal of Infrastructure Systems, 23(4), 04017016. doi:10.1061/(ASCE)IS.1943-555X.0000374
  • MnDOT (2016). Quantifying the Impact of Bridge Maintenance Activities on Deterioration: A Survey of Practice and Related Resources. Minnesota Department of Transportation, Office of Transportation System Management. Retrieved from https://www.dot.state.mn.us/research/TRS/2015/TRS1509.pdf
  • Mori, Y., & Ellingwood, B. R. (1994). Maintaining reliability of concrete structures. II: Optimum inspection/repair. Journal of Structural Engineering, 120(3), 846–862. doi:10.1061/(ASCE)0733-9445(1994)120:3(846)
  • Moshirabadi, S., Soltani, M., & Maekawa, K. (2015). Seismic interaction of underground RC ducts and neighboring bridge piers in liquefiable soil foundation. Acta Geotechnica, 10(6), 761–780.
  • NAE (2015). NAE Grand Challenges for Engineering. Retrieved from http://www.engineeringchallenges.org/challenges.aspx
  • Nakagawa, T. (1984). Optimal policy of continuous and discrete replacement with minimal repair at failure. Naval Research Logistics Quarterly, 31(4), 543–550. doi:10.1002/nav.3800310404
  • Nakagawa, T. (1985). Optimization problems in k-out-of-n systems. IEEE Transactions on Reliability, 34(3), 248–250. doi:10.1109/TR.1985.5222134
  • Nakagawa, T. (2005). Maintenance theory of reliability. Springer Science & Business Media, London.
  • Nakagawa, T., & Murthy, D. N. P. (1993). Optimal replacement policies for a two-unit system with failure interactions. RAIRO - Operations Research, 27(4), 427–438. doi:10.1051/ro/1993270404271
  • Ngamkhanong, C., Kaewunruen, S., & Costa, B. (2018). State-of-the-art review of railway track resilience monitoring. Infrastructures, 3(1), 3. doi:10.3390/infrastructures3010003
  • Ni Choine, M., Kashani, M. M., Lowes, L. N., O'Connor, A., Crewe, A. J., Alexander, N. A., & Padgett, J. E. (2016). Nonlinear dynamic analysis and seismic fragility assessment of a corrosion damaged integral bridge. International Journal of Structural Integrity, 7(2), 227–239. doi:10.1108/IJSI-09-2014-0045
  • Orcesi, A. D., & Frangopol, D. M. (2011). Probability-based multiple-criteria optimization of bridge maintenance using monitoring and expected error in the decision process. Structural and Multidisciplinary Optimization, 44(1), 137–148. doi:10.1007/s00158-010-0613-8
  • Ou, Y. C., Fan, H. D., & Nguyen, N. D. (2013). Long‐term seismic performance of reinforced concrete bridges under steel reinforcement corrosion due to chloride attack. Earthquake Engineering & Structural Dynamics, 42(14), 2113–2127. doi:10.1002/eqe.2316
  • Padgett, J. E., Ghosh, J., & Dueñas-Osorio, L. (2013). Effects of liquefiable soil and bridge modelling parameters on the seismic reliability of critical structural components. Structure and Infrastructure Engineering, 9(1), 59–77. doi:10.1080/15732479.2010.524654
  • Pang, Y., Dang, X., & Yuan, W. (2014). An artificial neural network based method for seismic fragility analysis of highway bridges. Advances in Structural Engineering, 17(3), 413–428. doi:10.1260/1369-4332.17.3.413
  • Peng, C., Yuan, M., Gu, C., Peng, Z., & Ming, T. (2017). A review of the theory and practice of regional resilience. Sustainable Cities and Society, 29, 86–96. doi:10.1016/j.scs.2016.12.003
  • Pham, H., & Wang, H. (1996). Imperfect maintenance. European Journal of Operational Research, 94(3), 425–438. doi:10.1016/S0377-2217(96)00099-9
  • Pullen, K. W., & Thomas, M. U. (1986). Evaluation of an opportunistic replacement policy for a 2-unit system. IEEE Transactions on Reliability, 35(3), 320–324. doi:10.1109/TR.1986.4335443
  • Rackwitz, R., & Joanni, A. (2009). Risk acceptance and maintenance optimization of aging civil engineering infrastructures. Structural Safety, 31(3), 251–259. doi:10.1016/j.strusafe.2008.07.001
  • Rao, A. S., Lepech, M. D., & Kiremidjian, A. (2017). Development of time-dependent fragility functions for deteriorating reinforced concrete bridge piers. Structure and Infrastructure Engineering, 13(1), 67–83. doi:10.1080/15732479.2016.1198401
  • Righi, A. W., Saurin, T. A., & Wachs, P. (2015). A systematic literature review of resilience engineering: Research areas and a research agenda proposal. Reliability Engineering & System Safety, 141, 142–152. doi:10.1016/j.ress.2015.03.007
  • Roberts, C. C. Jr, (2005). Minneapolis bridge collapse [Web log post]. Retrieved from http://www.croberts.com/minneapolis-bridge-collapse.htm
  • Rokneddin, K., Ghosh, J., Dueñas-Osorio, L., & Padgett, J. E. (2013). Bridge retrofit prioritization for ageing transportation networks subject to seismic hazards. Structure and Infrastructure Engineering, 9(10), 1050–1066. doi:10.1080/15732479.2011.654230
  • Rokneddin, K., Ghosh, J., Dueñas-Osorio, L., & Padgett, J. E. (2014). Seismic reliability assessment of aging highway bridge networks with field instrumentation data and correlated failures, II: Application. Earthquake Spectra, 30(2), 819–843. doi:10.1193/040612EQS160M
  • Rus, K., Kilar, V., & Koren, D. (2018). Resilience assessment of complex urban systems to natural disasters: A new literature review. International Journal of Disaster Risk Reduction, 31, 311–330. doi:10.1016/j.ijdrr.2018.05.015
  • Sánchez-Silva, M., Frangopol, D. M., Padgett, J., & Soliman, M. (2016). Maintenance and operation of infrastructure systems. Journal of Structural Engineering, 142(9), F4016004. doi:10.1061/(ASCE)ST.1943-541X.0001543
  • Sánchez-Silva, M., & Klutke, G. A. (2016). Reliability and life-cycle analysis of deteriorating systems (Vol. 182). Cham: Springer International Publishing.
  • Sharifi, A., & Yamagata, Y. (2016). Principles and criteria for assessing urban energy resilience: A literature review. Renewable and Sustainable Energy Reviews, 60, 1654–1677. doi:10.1016/j.rser.2016.03.028
  • Sharma, N., Tabandeh, A., & Gardoni, P. (2018). Resilience analysis: A mathematical formulation to model resilience of engineering systems. Sustainable and Resilient Infrastructure, 3(2), 49–67. doi:10.1080/23789689.2017.1345257
  • Sheils, E., O'Connor, A., Schoefs, F., & Breysse, D. (2012). Investigation of the effect of the quality of inspection techniques on the optimal inspection interval for structures. Structure and Infrastructure Engineering, 8(6), 557–568. doi:10.1080/15732479.2010.505377
  • Shekhar, S., Ghosh, J., & Padgett, J. E. (2018). Seismic life-cycle cost analysis of ageing highway bridges under chloride exposure conditions: modelling and recommendations. Structure and Infrastructure Engineering, 14(7), 941–966. doi:10.1080/15732479.2018.1437639
  • Sherif, Y. S., & Smith, M. L. (1981). Optimal maintenance models for systems subject to failure–a review. Naval Research Logistics Quarterly, 28(1), 47–74. doi:10.1002/nav.3800280104
  • Sheu, S. H., & Jhang, J. P. (1997). A generalized group maintenance policy. European Journal of Operational Research, 96(2), 232–247. doi:10.1016/S0377-2217(96)00073-2
  • Shinozuka, M., Banerjee, S., & Kim, S. H. (2007). Fragility considerations in highway bridge design (No. MCEER-07-0023). Multidisciplinary Center for Earthquake Engineering Research.
  • Simon, J., Bracci, J. M., & Gardoni, P. (2010). Seismic response and fragility of deteriorated reinforced concrete bridges. Journal of Structural Engineering, 136(10), 1273–1281. doi:10.1061/(ASCE)ST.1943-541X.0000220
  • Soliman, S. M., & Frangopol, D. M. (2014). Life-cycle management of fatigue-sensitive structures integrating inspection information. Journal of Infrastructure Systems, 20(2), 04014001. doi:10.1061/(ASCE)IS.1943-555X.0000169
  • Stein, S. M., Young, G. K., Trent, R. E., & Pearson, D. R. (1999). Prioritizing scour vulnerable bridges using risk. Journal of Infrastructure Systems, 5(3), 95–101. doi:10.1061/(ASCE)1076-0342(1999)5:3(95)
  • Stewart, M. G., & Rosowsky, D. V. (1998). Time-dependent reliability of deteriorating reinforced concrete bridge decks. Structural Safety, 20(1), 91–109. doi:10.1016/S0167-4730(97)00021-0
  • Sun, W., Bocchini, P., & Davison, B. D. (2018). Resilience metrics and measurement methods for transportation infrastructure: The state of the art. Sustainable and Resilient Infrastructure, Published online. doi:10.1080/23789689.2018.1448663
  • Sung, Y. C., & Su, C. K. (2011). Time-dependent seismic fragility curves on optimal retrofitting of neutralised reinforced concrete bridges. Structure and Infrastructure Engineering, 7(10), 797–805. doi:10.1080/15732470902989720
  • Thanapol, Y., Akiyama, M., & Frangopol, D. M. (2016). Updating the seismic reliability of existing RC structures in a marine environment by incorporating the spatial steel corrosion distribution: Application to bridge piers. Journal of Bridge Engineering, 21(7), 04016031. doi:10.1061/(ASCE)BE.1943-5592.0000889
  • Tilly, G. P. (1997). Principles of whole life costing (pp. 138–144). London: Thomas Telford.
  • Val, D. V., Stewart, M. G., & Melchers, R. E. (2000). Life‐cycle performance of RC bridges: probabilistic approach. Computer-Aided Civil and Infrastructure Engineering, 15(1), 14–25. doi:10.1111/0885-9507.00167
  • Valdez‐Flores, C., & Feldman, R. M. (1989). A survey of preventive maintenance models for stochastically deteriorating single‐unit systems. Naval Research Logistics, 36(4), 419–446. doi:10.1002/1520-6750(198908)36:4<419::AID-NAV3220360407>3.0.CO;2-5
  • van Noortwijk, J. M., & Frangopol, D. M. (2004). Two probabilistic life-cycle maintenance models for deteriorating civil infrastructures. Probabilistic Engineering Mechanics, 19(4), 345–359. doi:10.1016/j.probengmech.2004.03.002
  • Venkittaraman, A., & Banerjee, S. (2014). Enhancing resilience of highway bridges through seismic retrofit. Earthquake Engineering & Structural Dynamics, 43(8), 1173–1191. doi:10.1002/eqe.2392
  • Vergin, R. C., & Scriabin, M. (1977). Maintenance scheduling for multicomponent equipment. A I I E Transactions, 9(3), 297–305. doi:10.1080/05695557708975158
  • Vu, K. A. T., & Stewart, M. G. (2000). Structural reliability of concrete bridges including improved chloride-induced corrosion models. Structural Safety, 22(4), 313–333. doi:10.1016/S0167-4730(00)00018-7
  • Wan, C., Yang, Z., Zhang, D., Yan, X., & Fan, S. (2018). Resilience in transportation systems: a systematic review and future directions. Transport Reviews, 38(4), 479–498. doi:10.1080/01441647.2017.1383532
  • Wang, Z., Chan, A. P., Yuan, J., Xia, B., Skitmore, M., & Li, Q. (2015). Recent advances in modeling the vulnerability of transportation networks. Journal of Infrastructure Systems, 21(2), 06014002. doi:10.1061/(ASCE)IS.1943-555X.0000232
  • Wang, H., & Pham, H. (1999). Some maintenance models and availability with imperfect maintenance in production systems. Annals of Operations Research, 91, 305–318.
  • Wang, H., & Pham, H. (2006). Reliability and optimal maintenance. Springer Science & Business Media, London.
  • Wang, S. C., Liu, K. Y., Chen, C. H., & Chang, K. C. (2015). Experimental investigation on seismic behavior of scoured bridge pier with pile foundation. Earthquake Engineering & Structural Dynamics, 44(6), 849–864. doi:10.1002/eqe.2489
  • Wang, Y., Chen, C., Wang, J., & Baldick, R. (2016). Research on resilience of power systems under natural disasters—A review. IEEE Transactions on Power Systems, 31(2), 1604–1613. doi:10.1109/TPWRS.2015.2429656
  • Wang, Z., Dueñas‐Osorio, L., & Padgett, J. E. (2013). Seismic response of a bridge–soil–foundation system under the combined effect of vertical and horizontal ground motions. Earthquake Engineering & Structural Dynamics, 42(4), 545–564. doi:10.1002/eqe.2226
  • Wang, Z., Dueñas-Osorio, L., & Padgett, J. E. (2014). Influence of scour effects on the seismic response of reinforced concrete bridges. Engineering Structures, 76, 202–214. doi:10.1016/j.engstruct.2014.06.026
  • Wang, Z., Padgett, J. E., & Dueñas-Osorio, L. (2014). Risk-consistent calibration of load factors for the design of reinforced concrete bridges under the combined effects of earthquake and scour hazards. Engineering Structures, 79, 86–95. doi:10.1016/j.engstruct.2014.07.005
  • Wang, Z., Dueñas-Osorio, L., & Padgett, J. E. (2014). Influence of soil-structure interaction and liquefaction on the isolation efficiency of a typical multispan continuous steel girder bridge. Journal of Bridge Engineering, 19(8), A4014001. doi:10.1061/(ASCE)BE.1943-5592.0000526
  • Wildeman, R. E., Dekker, R., & Smit, A. C. J. M. (1997). A dynamic policy for grouping maintenance activities. European Journal of Operational Research, 99(3), 530–551. doi:10.1016/S0377-2217(97)00319-6
  • Xiao, H., Huang, W., & Chen, Q. (2010). Effects of submersion depth on wave uplift force acting on Biloxi Bay Bridge decks during Hurricane Katrina. Computers & Fluids, 39(8), 1390–1400.
  • Yang, D. Y., & Frangopol, D. M. (2019). Life-cycle management of deteriorating civil infrastructure considering resilience to lifetime hazards: A general approach based on renewal-reward processes. Reliability Engineering & System Safety, 183, 197–212. doi:10.1016/j.ress.2018.11.016
  • Yilmaz, T., & Banerjee, S. (2018). Impact spectrum of flood hazard on seismic vulnerability of bridges. Structural Engineering and Mechanics, 66(4), 515–529.
  • Yilmaz, T., Banerjee, S., & Johnson, P. A. (2016). Performance of two real-life California bridges under regional natural hazards. Journal of Bridge Engineering, 21(3), 04015063. doi:10.1061/(ASCE)BE.1943-5592.0000827
  • Yilmaz, T., Banerjee, S., & Johnson, P. A. (2018). Uncertainty in risk of highway bridges assessed for integrated seismic and flood hazards. Structure and Infrastructure Engineering, 14(9), 1182–1196. doi:10.1080/15732479.2017.1402065
  • Zaghi, A. E., Padgett, J. E., Bruneau, M., Barbato, M., Li, Y., Mitrani-Reiser, J., & McBride, A. (2016). Establishing common nomenclature, characterizing the problem, and identifying future opportunities in multihazard design. Journal of Structural Engineering, 142(12), H2516001. doi:10.1061/(ASCE)ST.1943-541X.0001586
  • Zhang, Y., Burton, H. V., Sun, H., & Shokrabadi, M. (2018). A machine learning framework for assessing post-earthquake structural safety. Structural Safety, 72, 1–16. doi:10.1016/j.strusafe.2017.12.001
  • Zhang, J., Huo, Y., Brandenberg, S. J., & Kashighandi, P. (2008). Effects of structural characterizations on fragility functions of bridges subject to seismic shaking and lateral spreading. Earthquake Engineering and Engineering Vibration, 7(4), 369–382. doi:10.1007/s11803-008-1009-2
  • Zhang, W., Wang, N., & Nicholson, C. (2017). Resilience-based post-disaster recovery strategies for road-bridge networks. Structure and Infrastructure Engineering, 13(11), 1404–1413.
  • Zhang, Y. L., & Wang, G. J. (2010). An optimal replacement policy for a multistate degenerative simple system. Applied Mathematical Modelling, 34(12), 4138–4150. doi:10.1016/j.apm.2010.04.011
  • Zheng, X., & Fard, N. (1991). A maintenance policy for repairable systems based on opportunistic failure-rate tolerance. IEEE Transactions on Reliability, 40(2), 237–244. doi:10.1109/24.87134
  • Zheng, Y., Dong, Y., & Li, Y. (2018). Resilience and life-cycle performance of smart bridges with shape memory alloy (SMA)-cable-based bearings. Construction and Building Materials, 158, 389–400. doi:10.1016/j.conbuildmat.2017.10.031
  • Zheng, Z., Zhou, W., Zheng, Y., & Wu, Y. (2016). Optimal maintenance policy for a system with preventive repair and two types of failures. Computers & Industrial Engineering, 98, 102–112. doi:10.1016/j.cie.2016.05.007
  • Zhong, J., Gardoni, P., & Rosowsky, D. (2012). Seismic fragility estimates for corroding reinforced concrete bridges. Structure and Infrastructure Engineering, 8(1), 55–69. doi:10.1080/15732470903241881
  • Zhou, Y., Banerjee, S., & Shinozuka, M. (2010). Socio-economic effect of seismic retrofit of bridges for highway transportation networks: a pilot study. Structure and Infrastructure Engineering, 6(1-2), 145–157. doi:10.1080/15732470802663862
  • Zhou, H., Wang, J., Wan, J., & Jia, H. (2010). Resilience to natural hazards: a geographic perspective. Natural Hazards, 53(1), 21–41. doi:10.1007/s11069-009-9407-y
  • Zhu, B., & Frangopol, D. M. (2013). Risk-based approach for optimum maintenance of bridges under traffic and earthquake loads. Journal of Structural Engineering, 139(3), 422–434. doi:10.1061/(ASCE)ST.1943-541X.0000671
  • Zhu, B., & Frangopol, D. M. (2016a). Time-variant risk assessment of bridges with partially and fully closed lanes due to traffic loading and scour. Journal of Bridge Engineering, 21(6), 04016021. doi:10.1061/(ASCE)BE.1943-5592.0000817
  • Zhu, B., & Frangopol, D. M. (2016b). Time-dependent risk assessment of bridges based on cumulative-time failure probability. Journal of Bridge Engineering, 21(12), 06016009. doi:10.1061/(ASCE)BE.1943-5592.0000977

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.