Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 16, 2020 - Issue 2
318
Views
12
CrossRef citations to date
0
Altmetric
Articles

Seismic behaviour of roller compacted concrete dams under different base treatments

, ORCID Icon &
Pages 355-366 | Received 22 Dec 2018, Accepted 04 Jul 2019, Published online: 11 Sep 2019

References

  • Akkar, S. (2011). Probabilistic seismic risk analysis of Melen dam for design spectrum calculations. Report No: 2010-03-03-1-01-04, METU. (in Turkish).
  • Aldemir, A. (2016). Seismic performance evaluation of roller compacted concrete gravity dams by pseudo dynamic testing (Doctoral dissertation). Middle East Technical University, Turkey.
  • Aldemir, A., Binici, B., Arici, Y., Kurc, O., & Canbay, E. (2015). Pseudo-dynamic testing of a concrete gravity dam. Earthquake Engineering & Structural Dynamics, 44(11), 1747–1763. doi:10.1002/eqe.2553
  • Aldemir, A. (2018). Prediction equations for the fundamental period and mode shape of roller compacted concrete gravity dams considering three dimensional geometry effects. Journal of Earthquake Engineering. doi:10.1080/13632469.2018.1532357
  • American Concrete Institute (ACI318) Committee. (2014). Building code requirements for structural concrete. American Concrete Institute, Farmington Hills.
  • ANSYS Inc. (2015). Basic analysis guide for ANSYS 16.2. SAS IP Inc., Pittsburgh, Pennsylvania, USA.
  • Arici, Y., Binici, B., & Aldemir, A. (2014). Comparison of the expected damage patterns from two-and three-dimensional nonlinear dynamic analyses of a roller compacted concrete dam. Structure and Infrastructure Engineering, 10(3), 305–315. doi:10.1080/15732479.2012.753921
  • Binici, B., Aldemir, A., & Gharibdoust, A. (2016). Effect of base roughness on seismic response of concrete gravity dams. Paper presented at the 10th ICOLD European Club Symposium, Antalya, Turkey.
  • Carter, B. (2008). Structures and land forms: Faults [online]. Retrieved from http://itc.gsw.edu/faculty/bcarter/geomorph/struct/fault1.htm
  • Chavez, J. W., & Fenves, G. L. (1994). EAGD Slide: A computer program for the earthquake analysis of concrete gravity dams including base sliding (Report No: UCB/SEMM-1994-02). Berkeley, CA: Structural Engineering Mechanics and Materials, University of California,.
  • Chopra, A. K., & Zhang, L. (1991). Base sliding response of concrete gravity dams to earthquakes (Report No. UCB/EERC 91/05). Berkeley, CA: Earthquake Engineering Research Center, University of California.
  • Dasgupta, G., & Chopra, A. K. (1979). Dynamic stiffness matrices for viscoelastic half planes. Journal of Engineering Mechanics Division (ASCE), 105(5), 729–745.
  • Elkhoraibi, T., & Mosalam, K. M. (2007). Towards error-free hybrid simulation using mixed variables. Earthquake Engineering & Structural Dynamics, 36(11), 1497–1522. doi:10.1002/eqe.691
  • Fenves, G., & Chopra, A. K. (1984a). Earthquake analysis of concrete gravity dams including reservoir bottom and dam-water-foundation rock interaction. Earthquake Engineering & Structural Dynamics, 12(5), 663–680. doi:10.1002/eqe.4290120507
  • Fenves, G., & Chopra, A. K. (1984b). Earthquake analysis and response of concrete gravity dams (Report No: UCB/EERC-84/10). Berkeley, CA: Earthquake Engineering Research Center, University of California.
  • Fenves, G., & Chopra, A. K. (1984c). “EAGD-84: A computer program for earthquake response analysis of concrete gravity dams,” Report No: UCB/EERC-734, Earthquake Engineering Research Center, University of California, Berkeley, California.
  • Fenves, G., & Chopra, A. K. (1985a). Simplified earthquake analysis of concrete gravity dams: Separate hydrodynamic and foundation interaction effects. Journal of Engineering Mechanics, 111(6), 715–735. doi:10.1061/(ASCE)0733-9399(1985)111:6(715)
  • Fenves, G., & Chopra, A. K. (1985b). Simplified earthquake analysis of concrete gravity dams: Combined hydrodynamic and foundation interaction effects. Journal of Engineering Mechanics, 111(6), 736–756. doi:10.1061/(ASCE)0733-9399(1985)111:6(736)
  • Fronteddu, L., Leger, P., & Tinawi, R. (1998). Static and dynamic behavior of concrete lift joint interfaces. Journal of Structural Engineering, 124(12), 1418–1430. doi:10.1061/(ASCE)0733-9445(1998)124:12(1418)
  • Gharibdoust, A. (2016). Seismic testing of a scaled roller-compacted-concrete gravity dam (M.S. Thesis). Middle East Technical University, Turkey.
  • Lim, W. Z., Xiao, R. Y., & Chin, C. S. (2012). A comparison of fluid-structure interaction methods for a simple numerical analysis of concrete gravity-dam. Proceedings of the 20th UK Conference of the Association for Computational Mechanics in Engineering, The University of Manchester, Manchester, UK.
  • Matlab. (2015). MathWorks Inc., Natick, MA.
  • Mehta, P. K., & Monteiro, P. J. M. (2014). Concrete: Microstructure, properties, and materials (4th ed.). McGraw-Hill, New York, USA.
  • Mir, R. A., & Taylor, C. A. (1996). An investigation into the base sliding response of rigid concrete gravity dams dynamic loading. Earthquake Engineering & Structural Dynamics, 25(1), 79–98. doi:10.1002/(SICI)1096-9845(199601)25:1<79::AID-EQE539>3.0.CO;2-P
  • Mridha, S., & Maity, D. (2014). Experimental investigation on nonlinear dynamic response of concrete gravity dam-reservoir system. Engineering Structures, 80(1), 289–297. doi:10.1016/j.engstruct.2014.09.017
  • Nuss, L. K., Matsumoto, N., & Hansen, K. D. (2012). Shaken but not stirred earthquake performance of concrete dams. Paper presented at the 32nd Annual USSD Conference, New Orleans, Louisiana.
  • Rochon-Cyr, M., & Léger, P. (2009). Shake table sliding response of a gravity dam model including water uplift pressure. Engineering Structures, 31(8), 1625–1633. doi:10.1016/j.engstruct.2009.03.001
  • Saouma, V., Broz, J., Brühwiler, E., & Boggs, H. (1991). Effect of aggregate and specimen size on fracture properties of dam concrete. Journal of Materials in Civil Engineering, 3(3), 204–218. doi:10.1061/(ASCE)0899-1561(1991)3:3(204)
  • Soysal, B. F., Binici, B., & Arıcı, Y. (2016). Investigation of the relationship of seismic intensity measures and the accumulation of damage on concrete gravity dams using incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 45(5), 719–737. doi:10.1002/eqe.2681
  • Tinawi, R., Leger, P., Leclerc, M., & Cipolla, G. (2000). Seismic safety of gravity dams: from shake table experiments to numerical analyses. Journal of Structural Engineering, 126(4), 518–529. doi:10.1061/(ASCE)0733-9445(2000)126:4(518)
  • United States Army Corps of Engineering (USACE). (2003). Time history dynamic analysis of concrete hydraulic structures (Report No: EM 1110-2-6051). Washington, DC.
  • Willam, K. J., & Warnke, E. D. (1975). Constitutive model for the triaxial behavior of concrete. Paper presented at the Proceedings of International Association for Bridge and Structural Engineering, 19, ISMES, Bergamo, Italy.
  • Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., & Tockner, K. (2015). A global boom in hydropower dam construction. Aquatic Sciences, 77(1), 161–170. doi:10.1007/s00027-014-0377-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.