Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 16, 2020 - Issue 5
193
Views
13
CrossRef citations to date
0
Altmetric
Articles

A statistical study on lognormal central tendency estimation in probabilistic seismic assessments

, &
Pages 803-819 | Received 24 Aug 2018, Accepted 06 May 2019, Published online: 26 Sep 2019

References

  • Abyani, M., Asgarian, B., & Zarrin, M. (2018). Statistical assessment of seismic fragility curves for steel jacket platforms considering global dynamic instability. Ships and Offshore Structures, 13(4), 366–374. doi:10.1080/17445302.2017.1386078
  • Abyani, M., Asgarian, B., & Zarrin, M. (2019). Sample geometric mean versus sample median in closed form framework of seismic reliability evaluation: A case study comparison. Earthquake Engineering and Engineering Vibration, 18(1), 187–201. doi:10.1007/s11803-019-0498-5
  • Anderson, T. W., & Darling, D. A. (1954). A test of goodness-of-fit. Journal of the American Statistical Association, 49(268), 765–769. doi:10.2307/2281537
  • ASCE 7-05. (2006). Minimum design loads for buildings and other structures. American Society of Civil Engineers, Reston, VA, USA.
  • Asgarian, B., Zarrin, M., & Boroumand, M. (2013). Nonlinear dynamic analysis of pile foundation subjected to strong ground motion using fiber elements. International Journal of Maritime Technology, 1(1), 35–46.
  • Asgarian, B., Zarrin, M., & Sabzeghabaian, M. (2018). Effect of foundation behavior on steel jacket offshore platform failure modes under wave loading. Ships and Offshore Structures, 14(6), 570–581. doi:10.1080/17445302.2018.1526862
  • Baker, J. W., Shahi, S. K., & Jayaram, N. (2011). New ground motion selection procedures and selected motions for the peer transportation research program. PEER Report, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
  • Baker, J. W. (2015). Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra, 31(1), 579–599. doi:10.1193/021113EQS025M
  • Bazzurro, P., & Cornell, C. A. (1994). Seismic hazard analysis of nonlinear structures. I: Methodology. Journal of Structural Engineering, 120(11), 3320–3344. doi:10.1061/(ASCE)0733-9445(1994)120:11(3320)
  • Benjamin, J. R., & Cornell, A. (1970). Probability, statistics and decision for civil engineers. McGraw-Hill: New York.
  • Boulanger, R. W., Curras, C., Kutter, B. L., Wilson, D. W., & Abghari, A. (1999). Seismic soil-pile-structure interaction experiments and analyses. Journal of Geotechnical and Geoenvironmental Engineering, 125(9), 750–759. doi:10.1061/(ASCE)1090-0241(1999)125:9(750)
  • Cornell, A., Jalayer, F., Hamburger, R., & Foutch, D. (2002). Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines. Journal of Structural Engineering, 128(4), 526–533. doi:10.1061/(ASCE)0733-9445(2002)128:4(526)
  • De Souza, R. (2000). Forced-based finite element for large displacement inelastic analysis of frames (PhD thesis). University of California, Berkeley, CA.
  • Dolsek, M. (2009). Incremental dynamic analysis with consideration of modeling uncertainties. Earthquake Engineering & Structural Dynamics, 38(6), 805–825. doi:10.1002/eqe.869
  • FEMA. (2000). Recommended seismic design criteria for new steel moment-frame buildings, Report No. FEMA-350, SAC Joint Venture, Federal Emergency Management Agency, Washington DC.
  • FEMA. (2009). Quantification of Building Seismic Performance Factors. FEMA P695, Prepared by the Applied Technology Council (ATC), Federal Emergency Management Council (FEMA), Washington, DC.
  • Foulad, R., Mofid, M., & Zarrin, M. (2015). On the seismic performance of hat knee bracing system in low-rise multistory steel structures. Advances in Structural Engineering, 18(3), 325–338. doi:10.1260/1369-4332.18.3.325
  • Goutis, C., Casella, G., & Wells, M. T. (1996). Assessing evidence in multiple hypotheses. Journal of the American Statistical Association, 91(435), 1268–1277. doi:10.2307/2291745
  • Greenberg, A. L., Rhodes, R. R., & Clesceri, L. S. (1985). Standard methods for the examination of water and wastewater (16th ed.). Washington, DC: Am. Publ. Health Assoc.
  • Hirano, S. S., Nordheim, E. V., Amy, D. C., & Upper, C. D. (1985). Lognormal distribution of epiphytic bacterial populations on leaf surfaces. Applied and Environmental Microbiology, 44, 695–700.
  • Ibarra, L. F., & Krawinkler, H. (2005). Global collapse of frame structures under seismic excitations. Rep. No. TB 152, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA.
  • Jalayer, F. (2003). Direct probabilistic seismic analysis: implementing non-linear dynamic assessments (PhD thesis). Department of Civil and Environmental Engineering, Stanford University, CA.
  • Jeffreys, H. (1961). Theory of probability. Oxford, UK: Oxford University Press.
  • Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. doi:10.2307/2291091
  • Kazantzi, A., Vamvatsikos, D., & Lignos, D. (2014). Seismic performance of a steel moment resisting frame subject to strength and ductility uncertainty. Engineering Structures, 78, 69–77. doi:10.1016/j.engstruct.2014.06.044
  • Kiani, J., & Khanmohammadi, M. (2015). New approach for selection of real input ground motion records for Incremental Dynamic Analysis (IDA). Journal of Earthquake Engineering, 19(4), 592–623. doi:10.1080/13632469.2014.997901
  • Lallemant, D., Kiremidjian, A., & Burton, H. (2015). Statistical procedures for developing earthquake damage fragility curves. Earthquake Engineering & Structural Dynamics, 49(9), 1373–1389. doi:10.1002/eqe.2522
  • Lemaire, M., Chateauneuf, A., & Mitteau, J. (2005). Structural reliability. Wiley Publication, New York.
  • Lignos, D. G., & Krawinkler, H. (2011). Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading. Journal of Structural Engineering, 137(11), 1291–1302. doi:10.1061/(ASCE)ST.1943-541X.0000376
  • Lignos, D. G., & Krawinkler, H. (2012). Sidesway collapse of deteriorating structural systems under seismic excitations. Stanford, CA: John A. Blume Earthquake Engineering Center.
  • Limpert, E., Stahel, W. A., & Abbt, M. (2001). Log-normal distributions across the sciences: Keys and clues. BioScience, 51(5), 341–352.
  • Loper, J. E., Suslow, T. V., & Schroth, N. M. (1984). Lognormal distribution of bacterial populations in the rhizosphere. Phytopathology, 74(12), 1454–1460. doi:10.1094/Phyto-74-1454
  • Mazzoni, S., McKenna, F., Scott, M., & Fenves, G. (2007). Open System for Earthquake Engineering Simulation (OpenSEES), OpenSEES command language manual. University of California, Berkeley, CA.
  • McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239–245. doi:10.1080/00401706.1979.10489755
  • Menegotto, M., & Pinto, P. (1973). Method of analysis for cyclically loaded reinforced concrete plane frame including changes in geometry and non-elastic behavior of elements under combined normal force and bending. Proceeding, IABSE symposium on resistance and ultimate deformability of structures acted on by well defined repeated loads. International Association of Bridge and Structural Engineering, Libson, Portugal (pp. 15–22).
  • Moehle, J. P., & Deierlein, G. G. (2004). A framework methodology for performance-based earthquake engineering. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 1–6 August 2004.
  • Padgett, J. E., & DesRoches, R. (2008). Methodology for the development of analytical fragility curves for retrofitted bridges. Earthquake Engineering & Structural Dynamics, 37(8), 1157–1174. doi:10.1002/eqe.801
  • Parkin, T. B., & Robinson, J. A. (1993). Statistical evaluation of median estimators for lognormally distributed variables. Soil Science Society of America Journal, 57(2), 317–323. doi:10.2136/sssaj1993.03615995005700020005x
  • Razali, N. M., & Wah, Y. B. (2011). Power comparison of Shapiro-wilk, Kolmogrov Smirnov, Lillefors and Anderson Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33.
  • Reed, J. W., & Kennedy, R. P. (1994). Methodology for Developing Seismic Fragilities. Final Report, TR-103959, EPRI.
  • Romao, X., Delgado, R., & Costa, A. (2013). Assessment of the statistical distributions of structural demand under earthquake loading. Journal of Earthquake Engineering, 15(5), 724–753. doi:10.1080/13632469.2010.539296
  • Sharifian, H., Bargi, K., & Zarrin, M. (2015). Ultimate strength of fixed offshore platforms subjected to near-fault earthquake ground vibration. Shock and Vibration, 2015, 1–19. doi:10.1155/2015/841870
  • Shome, N. (1999). Probabilistic seismic demand analysis of nonlinear structures (PhD thesis). Department of Civil and Environmental Engineering, Stanford University, CA.
  • Soong, T. T. (2004). Fundamentals of probability and statistics for engineers: Buffalo, NY: State University of New York at Buffalo.
  • Spacone, E., Filippou, F. C., & Taucer, F. F. (1996). Fiber Beam column model for nonlinear analysis of RC frames. I: formulation. Earthquake Engineering & Structural Dynamics, 25(7), 711–725. doi:10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9
  • Vamvatsikos, D. (2013). Derivation of new SAC/FEMA performance evaluation solutions with second-order hazard approximation. Earthquake Engineering & Structural Dynamics, 42(8), 1171–1188. doi:10.1002/eqe.2265
  • Vamvatsikos, D., & Cornell, A. (2002). Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31(3), 491–514. doi:10.1002/eqe.141
  • Vorechovsky, M., & Novak, D. (2009). Correlation control in small-sample Monte Carlo type simulations 1: A simulated annealing approach. Probabilistic Engineering Mechanics, 24, 452–462.
  • Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2002). Probability and statistics for engineers and scientists (9th ed.). Pearson, Boston: Prentice Hall.
  • Yang, Z., Elgamal, A., & Parra, E. (2003). Computational model for cyclic mobility and associated shear deformation. Journal of Geotechnical and Geoenvironmental Engineering, 129(12), 1119–1127. doi:10.1061/(ASCE)1090-0241(2003)129:12(1119)
  • Zarrin, M., Asgarian, B., & Abyani, M. (2018). Probabilistic seismic collapse analysis of jacket offshore platforms. ASME J Offshore Mechanic and Arctic Engineering, 140(3), 031601.
  • Zarrin, M., Asgarian, B., & Foulad, R. (2017). A review on factors affecting seismic pile response analysis: a parametric study. Journal of Numerical Methods in Civil Engineering, 2(2), 35–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.