250
Views
3
CrossRef citations to date
0
Altmetric
Articles

Reliability-based calibration of partial factors for the design of temporary scaffold structures

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 642-658 | Received 11 Mar 2019, Accepted 12 Sep 2019, Published online: 08 Oct 2019

References

  • Abd Alghaffar, M. A., & Dymiotis-Wellington, C. (2007). Time-variant reliability of retaining walls and calibration of partial factors. Structure and Infrastructure Engineering, 3(3), 187–198. doi:10.1080/15732470500440845
  • Adeli, H., & Sarma, K. C. (2006). Cost optimization of structures: Fuzzy logic, genetic algorithms, and parallel computing. Chichester, UK: John Wiley & Sons.
  • André, J., Beale, R., & Baptista, A. M. (2017). Risk analysis of bridge falsework cuplok systems. Structure and Infrastructure Engineering, 13(10), 1327–1349. doi:10.1080/15732479.2016.1265991
  • ASCE. (2002). Design loads on structures during construction. SEI/ASCE, 37-02. ASCE. Reston, Virginia
  • Baravalle, M., & Köhler, J. (2019). A risk-based approach for calibration of design codes. Structural Safety, 78, 63–75. doi:10.1016/j.strusafe.2018.12.003
  • Cajot, L., Haller, M., Conan, Y., Sedlacek, G., Kraus, O., Rondla, J., Cerfontaine, F., Lagerqvist, O., & Johansson, B. (2005). Probabilistic quantification of safety of a steel structure highlighting the potential of steel versus other materials (EUR, 21695), pp. 1–242. Luxembourg: Office for Official Publications of the European Communities.
  • Caspeele, R., Steenbergen, R., & Sykora, M. (2016). In R. Caspeele, R. Steenbergen, & M. Sykora, (Eds.), Partial factor methods for existing concrete structures (Vol. 80). Chapter 4. Partial factor methods for existing concrete structures. 26-72. fib. Germany.
  • Caspeele, R., Steenbergen, R., & Taerwe, L. (2012). An adjusted partial factor method for temporary structures compatible with the Eurocode framework. Civil Engineering and Environmental Systems, 30(2), 97–114. doi:10.1080/10286608.2012.733375
  • Caspeele, R., Sykora, M., Allaix, D. L., & Steenbergen, R. (2013). The design value method and adjusted partial factor approach for existing structures. Structural Engineering International, 23(4), 386–393. doi:10.2749/101686613X13627347100194
  • CEN. (2002). NBN EN 1990: Eurocode 0 – Basis of structural design. Brussels, Belgium: CEN.
  • CEN. (2004). NBN EN 12811-1: Temporary works equipment – Part 1: Scaffolds – Performance requirements and general design. Brussels, Belgium: CEN.
  • Eldukair, Z. A., & Ayyub, B. M. (1991). Analysis of recent US structural and construction failures. Journal of Performance of Constructed Facilities, 5(1), 57–73. doi:10.1061/(ASCE)0887-3828(1991)5:1(57)
  • Fiorillo, G., & Ghosn, M. (2018). Risk-based importance factors for bridge networks under highway traffic loads. Structure and Infrastructure Engineering. 15(1), 113-126. doi:10.1080/15732479.208.1496119
  • Fischer, K., Viljoen, C., Köhler, J., & Faber, M. H. (2019). Optimal and acceptable reliabilities for structural design. Structural Safety, 76, 149–161. doi:10.1016/j.strusafe.2018.09.002
  • Gayton, N., Mohamed, A., Sorensen, J. D., Pendola, M., & Lemaire, M. (2004). Calibration methods for reliability-based design codes. Structural Safety, 26(1), 91–121. doi:10.1016/S0167-4730(03)00024-9
  • Health and Safety Authority. (2005). Code of practice for access and working scaffolds. Ireland. Retrieved from http://www.hsa.ie/eng/Publications_and_Forms/Publications/Construction/Code_of_Practice_for_Access_and_Working_Scaffolds.html
  • Holický, M. (2012). Optimisation of the target reliability for temporary structures. Civil Engineering and Environmental Systems, 30(2), 87–96. doi:10.1080/10286608.2012.733373
  • Holický, M. (2016). Specification of the target reliability level. Paper presented at the 2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO), Beer-Sheva.
  • Holický, M., Marková, J., & Sýkora, M. (2014). Target reliability levels in present standards. Transactions of the Všb – Technical University of Ostrava, Civil Engineering Series., 14(2), 46–53. doi:10.2478/tvsb-2014-0018
  • ISO. (2015). ISO 2394:2015: General principles on reliability for structures (4th ed). Geneva, Switzerland: International Organization for Standardization.
  • JCSS. (2001). JCSS probabilistic model code. Zurich: Joint Committee of Structural Safety.
  • König, G., & Hosser, D. (1982). ‘The simplified level II method and its application on the derivation of safety elements for level I’. In CEB Bulletin no. 147, Conceptional Preparation of Future Codes – Progress Report. Comité euro-international du béton, Paris, France.
  • Layher. (2017). Layher technische brochure belastbaarheid allround-en systeemvrije onderdelen. Kontich, Belgium: Layher.
  • Layher. (2018). Layher allround scaffolding – Instructions for assembly and use. Edition 04.2018. Ref. No. 8116.230. Gueglingen-Eibensbach, Germany: Layher.
  • Rackwitz, R. (2000). Optimization – The basis of code-making and reliability verification. Structural Safety, 22(1), 27–60. doi:0.1016/S0167-4730(99)00037-5 doi:10.1016/S0167-4730(99)00037-5
  • Scafom International b.v. (2010). Facade scaffold framescaff: Technical manual. Retrieved from www.scafom-rux.com
  • Sørensen, J. D., Kroon, I. B., & Faber, M. H. (1994). Optimal reliability-based code calibration. Structural Safety, 15(3), 197–208. doi:10.1016/0167-4730(94)90040-X
  • Souder, C. (2014). Temporary structure design. Chichester, UK: John Wiley & Sons.
  • Standards Australia/Standards New Zealand. (2010). AS/NZS 1576.1:2010: Scaffolding general requirements. Standards Australia/Standards New Zealand.
  • Steenbergen, R., & Vrouwenvelder, A. (2010). Safety philosophy for existing structures and partial factors for traffic loads on bridges. Heron, 55(2), 2010. Retrieved from http://heronjournal.nl/.
  • Tanner, P., Hingorani, R., & Soriano, J. (2018). Safety requirements for the design of ancillary construction equipment. Paper presented at the Sixth International Symposium on Life-Cycle Civil Engineering, IALCCE 2018, Life-Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision, Ghent, Belgium.
  • Toft, H. S., & Sørensen, J. D. (2011). Reliability-based design of wind turbine blades. Structural Safety, 33(6), 333–342. doi:10.1016/j.strusafe.2011.05.003
  • Van Coile, R. (2015). Reliability-based decision making for concrete elements exposed to fire (Doctoral dissertation). Ghent University, Belgium.
  • Van Coile, R., Caspeele, R., & Taerwe, L. (2014). Lifetime cost optimization for the structural fire resistance of concrete slabs. Fire Technology, 50(5), 1201–1227. doi:10.1007/s10694-013-0350-9
  • VSB Vereniging van Steiger Hoogwerk en Betonbekistingbedrijven Bouwend Nederland. (2017). Richtlijn Steigers. Retrieved from http://www.richtlijnsteigers.com/
  • Zhang, H., Chandrangsu, T., & Rasmussen, K. (2010). Probabilistic study of the strength of steel scaffold systems. Structural Safety, 32(6), 393–401. doi:10.1016/j.strusafe.2010.02.005
  • Zhang, H., Rasmussen, K., & Ellingwood, B. R. (2012). Reliability assessment of steel scaffold shoring structures for concrete formwork. Engineering Structures, 36, 81–89. doi:10.1016/j.engstruct.2011.11.027
  • Zou, Y., & Ping Hong, H. (2011). Reliability assessment of FRP-confined concrete columns designed for buildings. Structure and Infrastructure Engineering, 7(3), 243–258. doi:10.1080/15732470802416998

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.