Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 16, 2020 - Issue 6
608
Views
4
CrossRef citations to date
0
Altmetric
Articles

Fatigue assessment of a reinforced concrete railway bridge based on a coupled dynamic system

ORCID Icon, , , , , & ORCID Icon show all
Pages 861-879 | Received 08 Nov 2018, Accepted 16 May 2019, Published online: 30 Sep 2019

References

  • AASHTO, L. (2012). AASHTO LRFD bridge design specifications. Washington, DC: Author
  • AREMA. (2013). AREMA Manual for Railway Engineering. Maryland: American Railway Engineering and Maintenance-of-Way Association
  • Arvidsson, T., & Karoumi, R. (2014). Modelling alternatives in the dynamic interaction of freight trains and bridges. Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance. Stirlingshire, UK: Civil-Comp Press. Paper 65, 2014. doi:10.4203/ccp.104.65
  • Bärighet, B. (2000). Bärighetsberäkning av järnvägsbroar (Assessment of Railway Bridges). (In Swedish). Borlänge, Sweden: Banverket.
  • Bagge, N., Popescu, C., & Elfgren, L. (2018). Failure tests on concrete bridges: Have we learnt the lessons? Structure and Infrastructure Engineering, 14(3), 292–319. doi:10.1080/15732479.2017.1350985
  • Berggren, E. G., Li, M. X., & Spännar, J. (2008). A new approach to the analysis and presentation of vertical track geometry quality and rail roughness. Wear, 265(9–10), 1488–1496. doi:10.1016/j.wear.2008.01.029
  • Board, N. T. S. (1970). Collapse of US 35 Highway Bridge Point Pleasant, West Virginia December 15, 1967. Washington, DC: Author.
  • Boverket, B. (2004). Boverkets handbok om betongkonstruktioner, BBK 04 (Design Rules for Concrete Structures. (In Swedish).
  • Brady, S. P., & O'Brien, E. J. (2006). Effect of vehicle velocity on the dynamic amplification of two vehicles crossing a simply supported bridge. Journal of Bridge Engineering, 11(2), 250–256. doi:10.1061/(ASCE)1084-0702(2006)11:2(250)
  • Cantero, D., Arvidsson, T., Obrien, E., & Karoumi, R. (2016). Train-track-bridge modelling and review of parameters. Structure and Infrastructure Engineering, 12(9), 1051–1064. doi:10.1080/15732479.2015.1076854
  • Chen, Z. (2011). Bridge over Qiantang River collapses, driver injured. Shanghai Daily, A07.
  • Doménech, A., Museros, P., & Martinez-Rodrigo, M. D. (2014). Influence of the vehicle model on the prediction of the maximum bending response of simply-supported bridges under high-speed railway traffic. Engineering Structures, 72, 123–139. doi:10.1016/j.engstruct.2014.04.037
  • Elfgren, L. (2015). Fatigue capacity of concrete structures: Assessment of railway bridges (S. Engineering, Trans., pp. 103). Luleå: Luleå tekniska universitet.
  • Elfgren, L., Enochsson, O., Puurula, A., Thun, H., Paulsson, B., & Täljsten, B. (2007). Testing to failure of a reinforced concrete railway bridge in Örnsköldsvik, Sweden. In J. Bien, L. Elfgren, & J. Olofsson (Eds.), Sustainable bridges–Assessment for future traffic demands and longer lives (pp. 445–460). Wrocław: Dolnośląskie Wydawnictwo Edukacyjne.
  • Fib. (2013). fib Model Code for concrete structures 2010. Berlin: Ernst & Sohn.
  • Frýba, L. (2013). Vibration of solids and structures under moving loads (Vol. 1). Groningen, Netherlands: Springer Science & Business Media.
  • Imam, B., Righiniotis, T. D., Chryssanthopoulos, M. K., & Bell, B. (2006). Analytical fatigue assessment of riveted rail bridges. Proceedings of the Institution of Civil Engineers-Bridge Engineering, pp. 105-116. London: Insititute of Civil Engineers.
  • Institution, B. S. (1980). BS 5400: Steel, concrete and composite bridges. Part 10: Code of practice for fatigue. London, England: British Standard Institution.
  • Institution, B. S. (2004). Eurocode 2: Design of concrete structures. Part 1-1: General Rules and Rules for Buildings. Brussels, Belgium: European Committee for Standardization
  • Iwnick, S. (1998). Manchester benchmarks for rail vehicle simulation. Vehicle System Dynamics, 30(3–4), 295–313. doi:10.1080/00423119808969454
  • Jajich, D., & Schultz, A. E. (2003). Measurement and analysis of distortion-induced fatigue in multigirder steel bridges. Journal of Bridge Engineering, 8(2), 84–91. doi:10.1061/(ASCE)1084-0702(2003)8:2(84)
  • Kouroussis, G., Connolly, D. P., & Verlinden, O. (2014). Railway-induced ground vibrations–A review of vehicle effects. International Journal of Rail Transportation, 2(2), 69–110. doi:10.1080/23248378.2014.897791
  • Leander, J., Andersson, A., & Karoumi, R. (2010). Monitoring and enhanced fatigue evaluation of a steel railway bridge. Engineering Structures, 32(3), 854–863. doi:10.1016/j.engstruct.2009.12.011
  • Lee, S. B. (1996). Fatigue failure of welded vertical members of a steel truss bridge. Engineering Failure Analysis, 3(2), 103–108. doi:10.1016/1350-6307(96)00003-9
  • Lippi, F. V., Orlando, M., & Salvatore, W. (2013). Assessment of the dynamic and fatigue behaviour of the Panaro railway steel bridge. Structure and Infrastructure Engineering, 9(8), 834–848. doi:10.1080/15732479.2011.625955
  • Liu, K., Reynders, E., De Roeck, G., & Lombaert, G. (2009). Experimental and numerical analysis of a composite bridge for high-speed trains. Journal of Sound and Vibration, 320(1–2), 201–220. doi:10.1016/j.jsv.2008.07.010
  • Liu, K., Zhou, H., Shi, G., Wang, Y. Q., Shi, Y. J., & De Roeck, G. (2013). Fatigue assessment of a composite railway bridge for high speed trains. Part II: Conditions for which a dynamic analysis is needed. Journal of Constructional Steel Research, 82, 246–254. doi:10.1016/j.jcsr.2012.11.014
  • Lundberg, G. (1949). Dynamic capacity of rolling bearings. Journal of Applied Mechanics, 16, 165.
  • Malveiro, J., Sousa, C., Ribeiro, D., & Rui, C. (2018). Impact of track irregularities and damping on the fatigue damage of a railway bridge deck slab. Structure and Infrastructure Engineering, 14(9), 1257–1268. doi:10.1080/15732479.2017.1418010
  • Manson, S. S., & Halford, G. R. (1981). Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage. International Journal of Fracture, 17(2), 169–192. doi:10.1007/BF00053519
  • Marco, S., & Starkey, W. (1954). A concept of fatigue damage. ASME Transactions, 76(4), 627–632.
  • Matsuishi, M., & Endo, T. (1968). Fatigue of metals subjected to varying stress. Japan Society of Mechanical Engineers, 68(2), 37–40.
  • Miner, M. (1945). Cumulative fatigue damage. Journal of Applied Mechanics, 3(12), A159–A164.
  • Newton, S., & Clark, R. (1979). An investigation into the dynamic effects on the track of wheelflats on railway vehicles. Journal of Mechanical Engineering Science, 21(4), 287–297. doi:10.1243/JMES_JOUR_1979_021_046_02
  • Palmgren, A. (1924). Die Lebensdauer von Kugellagern (Life length of roller bearings. (In German). Zeitschrift des Vereins Deutscher Ingenieure, 68(14), S339–S341.
  • Paulsson, B., Töyrä, B., Elfgren, L., Ohlsson, U., & Danielsson, G. (1997). Increased loads on railway bridges of concrete. Symposium on Advanced Design of Concrete Structures, Barcelona, Spain: 12/06/1997-14/06/1997.
  • Rocha, M., & Brühwiler, E. (2012). Prediction of fatigue life of reinforced concrete bridges using Fracture Mechanics. Proceedings bridge maintenance, safety, management, resilience and sustainability, Stresa, Italy: July 9-11, 2012.
  • Shah, S. (1984). Predictions of comulative damage for concrete and reinforced concrete. Matériaux et Constructions, 17(1), 65–68. doi:10.1007/BF02474059
  • SIA. (1997). Ermüdung von Betonbauten (Fatigue of Concrete structures (In German). SIA Dokumentation D 0133, Zürich.
  • Song, M. K., Noh, H. C., & Choi, C. K. (2003). A new three-dimensional finite element analysis model of high-speed train–bridge interactions. Engineering Structures, 25(13), 1611–1626. doi:10.1016/S0141-0296(03)00133-0
  • Sousa, C., Rocha, J. F., Rui, C., & Neves, A. S. (2013). Fatigue analysis of box-girder webs subjected to in-plane shear and transverse bending induced by railway traffic. Engineering Structures, 54, 248–261. doi:10.1016/j.engstruct.2013.04.008
  • Thun, H., Ohlsson, U., & Elfgren, L. (2000). Fatigue capacity of small railway concrete bridges: Prevision of the results of Swedish full-scale tests. Comparison and Analyses (pp. 99): ERRI D216, Luleå University of Technology.
  • UIC. (2009). 776-2 R. Design requirements for rail-bridges based on interaction phenomena between train, track and bridge. International Union of Railways.
  • Wöhler, A. (1858). Bericht über die Versuche, welche auf der Königl. Niederschlesisch-Märkischen Eisenbahn mit Apparaten zum Messen der Biegung und Verdrehung von Eisenbahnwagen-Achsen während der Fahrt angestellt wurden (Tests to study bending and torsion of railroad wagon axles). (In German). Zeitschrift für Bauwesen, 8(1858), 641–652.
  • Warburton, G. B. (1976). The dynamical behaviour of structures (2nd ed.). Oxford, UK: Pergamon.
  • Wőhler, A. (1860). Versuche zur Ermittlung der auf die Eisenbahnwagenachsen einwirkenden Kräfte und die Widerstandsfahigkeit der Wagen-Achsen (Tests to study the fatigue strength of railroad wagon axles. In German). Zeitschrift für Bauwesen, 10(1860), 583–616.
  • Xia, H., Zhang, N., & Guo, W. W. (2006). Analysis of resonance mechanism and conditions of train-bridge system. Journal of Sound and Vibration, 297(3–5), 810–822. doi:10.1016/j.jsv.2006.04.022
  • Yao, W. X. (2003). Structural fatigue life analysis. Beijing, China: National Defend Industry Press.
  • Zhai, W. (2007). Vehicle-track coupling dynamics. Beijing, China: Science Publishing House.
  • Zhou, H., Liu, K., Shi, G., Wang, Y. Q., Shi, Y. J., & De Roeck, G. (2013). Fatigue assessment of a composite railway bridge for high speed trains. Part I: Modeling and fatigue critical details. Journal of Constructional Steel Research, 82, 234–245. doi:10.1016/j.jcsr.2012.12.006
  • Zhu, J. S., Huang, F. M., Guo, T., & Song, Y. H. (2015). Residual life evaluation of prestressed reinforced concrete highway bridges under coupled corrosion-fatigue actions. Advanced Steel Construction, 11(3), 372–382.
  • Zhu, S. J., Levinson, D., Liu, H. X., & Harder, K. (2010). The traffic and behavioral effects of the I-35W Mississippi River bridge collapse. Transportation Research Part a-Policy and Practice, 44(10), 771–784. doi:10.1016/j.tra.2010.07.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.