Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 16, 2020 - Issue 6
782
Views
19
CrossRef citations to date
0
Altmetric
Articles

Effect of modelling complexities on extreme wind hazard performance of steel lattice transmission towers

ORCID Icon, ORCID Icon &
Pages 898-915 | Received 24 Nov 2018, Accepted 26 Jul 2019, Published online: 09 Oct 2019

References

  • ASCE No. 07 (2016). Minimum design loads for buildings and other structures. Reston, VA: American Society of Civil Engineers .
  • ASCE No. 74. (2009). Guidelines for electrical transmission line structural loading. Reston, VA: American Society of Civil Engineers.
  • Bhat, R., Darestani, Y. M., Shafieezadeh, A., Meliopoulos, A. P., & DesRoches, R. (2018). Resilience assessment of distribution systems considering the effect of hurricanes. Paper presented at the 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Denver, CO, USA, April 16–19, pp. 1–5.
  • Campbell, R. J., & Lowry, S. (2012). Weather-related power outages and electric system resiliency. Washington, DC: Congressional Research Service, Library of Congress.
  • Darestani, Y. M., & Shafieezadeh, A. (2016). Modeling the impact of adjacent spans in overhead distribution lines on the wind response of utility poles. Paper presented at the Geotechnical and Structural Engineering Congress, Phoenix, AZ, USA, 2016, 1067–1077.
  • Darestani, Y. M., & Shafieezadeh, A. (2017). Hurricane performance assessment of power distribution lines using multi-scale matrix-based system reliability analysis method. Paper presented at the 13th Americas Conference on Wind Engineering, Gainesville, FL, USA.
  • Darestani, Y. M., & Shafieezadeh, A. (2019a). Multi-dimensional wind fragility functions for wood utility poles. Engineering Structures, 183, 937–948. doi:10.1016/j.engstruct.2019.01.048
  • Darestani, Y. M., & Shafieezadeh, A. (2019b). A framework for hurricane resilience assessment of power distribution systems. Paper presented at the 13th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP13), Seoul, South Korea, May 26–30, 2019.
  • Darestani, Y. M., Shafieezadeh, A., & DesRoches, R. (2016). An equivalent boundary model for effects of adjacent spans on wind reliability of wood utility poles in overhead distribution lines. Engineering Structures, 128, 441–452. doi:10.1016/j.engstruct.2016.09.052
  • Darestani, Y. M., Shafieezadeh, A., & DesRoches, R. (2018). Effects of adjacent spans and correlated failure events on system-level hurricane reliability of power distribution lines. IEEE Transactions on Power Delivery, 33(5), 2305–2314.
  • Darestani, Y. M., Wang, Z., & Shafieezadeh, A. (2019). Wind reliability of transmission line models using kriging-based methods. Paper presented at the 13th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP13), Seoul, South Korea, May 26–30, 2019.
  • De Souza, R. R., Miguel, L. F. F., Kaminski, J., Jr., & Lopez, R. H. (2019). Topology design recommendations of transmission line towers to minimize the bolt slippage effect. Engineering Structures, 178, 286–297. doi:10.1016/j.engstruct.2018.10.032
  • Ebad Sichani, M., & Padgett, J. E. (2019). Surrogate modelling to enable structural assessment of collision between vertical concrete dry casks. Structure and Infrastructure Engineering, 15, 1137–1150. doi:10.1080/15732479.2019.1618878
  • Ebad Sichani, M., Padgett, J. E., & Bisadi, V. (2018). Probabilistic seismic analysis of concrete dry cask structures. Structural Safety, 73, 87–98. doi:10.1016/j.strusafe.2018.03.001
  • Elks, S. (2016, January 7). Floods live: Thames and Severn rising fast. The Times. Retrieved from http://www.thetimes.co.uk/tto/multimedia/archive/00522/147453653__522161b.jpg
  • Ellingwood, B. R., & Tekie, P. B. (1999). Wind load statistics for probability-based structural design. Journal of Structural Engineering, 125(4), 453–463. doi:10.1061/(ASCE)0733-9445(1999)125:4(453)
  • Fang, S. J., Roy, S., & Kramer, J. (1999). Transmission structures. In W.-F. Chen (Ed.), Structural engineering handbook. Boca Raton, FL: CRC Press LLC.
  • Fu, X., & Li, H. N. (2018). Uncertainty analysis of the strength capacity and failure path for a transmission tower under a wind load. Journal of Wind Engineering and Industrial Aerodynamics, 173, 147–155. doi:10.1016/j.jweia.2017.12.009
  • Hoffman, P., & Bryan, W. (2013). Comparing the impacts of northeast hurricanes on energy infrastructure. Washington, DC: Office of Electricity Delivery and Energy Reliability, US Dept. of Energy.
  • IEEE TP&C Line Design. (2018). Retrieved from http://www.oocities.org/ieee_tpc/ieee_photos/photos.htm
  • Jiang, W. Q., Liu, Y. P., Chan, S. L., & Wang, Z. Q. (2017). Direct analysis of an ultrahigh-voltage lattice transmission tower considering joint effects. Journal of Structural Engineering, 143(5), 04017009. doi:10.1061/(ASCE)ST.1943-541X.0001736
  • Jiang, W. Q., Wang, Z. Q., McClure, G., Wang, G. L., & Geng, J. D. (2011). Accurate modeling of joint effects in lattice transmission towers. Engineering Structures, 33(5), 1817–1827. doi:10.1016/j.engstruct.2011.02.022
  • Kaminski, J., Jr., Riera, J. D., de Menezes, R. C. R., & Miguel, L. F. (2008). Model uncertainty in the assessment of transmission line towers subjected to cable rupture. Engineering Structures, 30(10), 2935–2944. doi:10.1016/j.engstruct.2008.03.011
  • Kempner, L., Jr., Mueller, W. H., III, Kitipornchai, S., Albermani, F., De Menezes, R. C., & da Silva, J. B. (2002). Lattice transmission tower analysis: Beyond simple truss model. Paper presented at the Proceedings of the Conference on Electrical Transmission in a New Age, ASCE, Omaha, NE, USA, September 9-12, pp. 175–187.
  • Kitipornchai, S., Al-Bermani, F. G. A., & Peyrot, A. H. (1994). Effect of bolt slippage on ultimate behavior of lattice structures. Journal of Structural Engineering, 120(8), 2281–2287. doi:10.1061/(ASCE)0733-9445(1994)120:8(2281)
  • Kroetz, H. M., Tessari, R. K., & Beck, A. T. (2017). Performance of global metamodeling techniques in solution of structural reliability problems. Advances in Engineering Software, 114, 394–404. doi:10.1016/j.advengsoft.2017.08.001
  • McKenna, F. (2010). OpenSees: A framework for earthquake engineering simulation. Computing in Science & Engineering, 13(4), 58–66. doi:10.1109/MCSE.2011.66
  • NIDA. (2015). User’s manual: Nonlinear integrated design and analysis. Retrieved from http://www.nidacse.com
  • Rahimi, M., Wang, Z., Shafieezadeh, A., Wood, D., & Kubatko, E. J. (2019). An adaptive kriging-based approach with weakly stationary random fields for soil slope reliability analysis. In Geo-Congress 2019: Soil Erosion, Underground Engineering, and Risk Assessment (pp. 148–157). Reston, VA: American Society of Civil Engineers.
  • Rao, N. P., Knight, G. S., Mohan, S. J., & Lakshmanan, N. (2012). Studies on failure of transmission line towers in testing. Engineering Structures, 35, 55–70. doi:10.1016/j.engstruct.2011.10.017
  • Rezaei, S. N., Chouinard, L., Langlois, S., & Légeron, F. (2016). Analysis of the effect of climate change on the reliability of overhead transmission lines. Sustainable Cities and Society, 27, 137–144. doi:10.1016/j.scs.2016.01.007
  • Rezaei, S. N., Chouinard, L., Langlois, S., & Légeron, F. (2017). A probabilistic framework based on statistical learning theory for structural reliability analysis of transmission line systems. Structure and Infrastructure Engineering, 13(12), 1538–1552. doi:10.1080/15732479.2017.1299771
  • Søreide, T. H., Amdahl, J., Eberg, E., Holmås, T., & Hellan, Ø. (1993). USFOS – A computer program for progressive collapse analysis of steel offshore structures: Theory manual. Trondheim: SINTEF.
  • Szafran, J. (2015). An experimental investigation into failure mechanism of a full-scale 40 m high steel telecommunication tower. Engineering Failure Analysis, 54, 131–145. doi:10.1016/j.engfailanal.2015.04.017
  • Tapia-Hernández, E., Ibarra-González, S., & De-León-Escobedo, D. (2017). Collapse mechanisms of power towers under wind loading. Structure and Infrastructure Engineering, 13(6), 766–782. doi:10.1080/15732479.2016.1190765
  • Tapia-Hernández, E., & Sordo, E. (2017). Structural behaviour of lattice transmission towers subjected to wind load. Structure and Infrastructure Engineering, 13(11), 1462–1475. doi:10.1080/15732479.2017.1290120
  • Tessari, R. K., Kroetz, H. M., & Beck, A. T. (2017). Performance-based design of steel towers subject to wind action. Engineering Structures, 143, 549–557. doi:10.1016/j.engstruct.2017.03.053
  • Ungkurapinan, N. (2000). A study of joint slip in galvanized bolted angle connections (MSc thesis). University of Manitoba, Winnipeg, Canada.
  • Uriz, P., Filippou, F. C., & Mahin, S. A. (2008). Model for cyclic inelastic buckling of steel braces. Journal of Structural Engineering, 134(4), 619–628. doi:10.1061/(ASCE)0733-9445(2008)134:4(619)
  • Wang, F. Y., Xu, Y. L., & Zhan, S. (2017). Concurrent multi-scale modeling of a transmission tower structure and its experimental verification. Advanced Steel Construction, 13, 258–272.
  • Zamanian, S. (2016). Probabilistic performance assessment of deteriorating buried concrete sewer pipes (PhD thesis). The Ohio State University, Columbus.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.