Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 16, 2020 - Issue 8
496
Views
7
CrossRef citations to date
0
Altmetric
Articles

Effect of abutment movements on nonlinear seismic response of an arch dam

&
Pages 1106-1120 | Received 09 Apr 2019, Accepted 02 Aug 2019, Published online: 06 Nov 2019

References

  • Alembagheri, M., & Ghaemian, M. (2013). Damage assessment of a concrete arch dam through nonlinear incremental dynamic analysis. Soil Dynamics and Earthquake Engineering, 44, 127–137.
  • Altunişik, A. C., Günaydin, M., Sevim, B., Bayraktar, A., & Adanur, S. (2016). Retrofitting effect on the dynamic properties of model-arch dam with and without reservoir water using ambient-vibration test methods. Journal of Structural Engineering, 142, 04016069. doi:10.1061/(ASCE)ST.1943-541X.0001520
  • Bayraktar, A., Sevim, B., & Altunişik, A. C. (2011). Finite element model updating effects on nonlinear seismic response of arch dam–reservoir–foundation systems. Finite Elements in Analysis and Design, 47, 85–97. doi:10.1016/j.finel.2010.09.005
  • Bazant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Matériaux et Constructions, 16, 155–177. doi:10.1007/BF02486267
  • Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114, 185–200. doi:10.1006/jcph.1994.1159
  • Cheng, L., Liu, Y. R., Yang, Q., Pan, Y. W., & Lv, Z. (2017). Mechanism and numerical simulation of reservoir slope deformation during impounding of high arch dams based on nonlinear fem. Computers and Geotechnics, 81, 143–154. doi:10.1016/j.compgeo.2016.08.009
  • China, N. E. B. (2015). Code for seismic design of hydraulic structures of hydropoer projects. Beijing: China Electric Power Press.
  • Chopra, A. K. (2012). Earthquake analysis of arch dams: Factors to be considered. Journal of Structural Engineering, 138, 205–214. doi:10.1061/(ASCE)ST.1943-541X.0000431
  • Colombo, M., Domaneschi, M., & Ghisi, A. (2016). Existing concrete dams: Loads definition and finite element models validation. Structural Monitoring and Maintenance, 3, 129–144. doi:10.12989/smm.2016.3.2.129
  • Colombo, M., Domaneschi, M., Ghisi, A., & Griffini, S. (2018). Bearable maximum seismic action for existing concrete dams. Ingegneria Sismica – International Journal of Earthquake Engineering, 35, 3–24.
  • Colombo, M., Domaneschi, M., Ghisi, A., Griffini, S., Novati, G., Perego, U., … Valgoi, P. (2017). Stress verifications of large concrete existing dams: Comparison of two seismic Italian codes. Ingegneria Sismica - International Journal of Earthquake Engineering, 34, 61–82.
  • Dassault, S. (2012). Abaqus 6.12, Analysis and Theory Manual, Simulia, Dassault Systems.
  • Deeks, A. J., & Randolph, M. F. (1994). Axisymmetric time domain transmitting boundaries. Journal of Engineering Mechanics, 120, 25–42. doi:10.1061/(ASCE)0733-9399(1994)120:1(25)
  • Fenves, G. L., Mojtahedi, S., & Reimer, R. B. (1992). Effect of contraction joints on earthquake response of an arch dam. Journal of Structural Engineering, 118, 1039–1055. doi:10.1061/(ASCE)0733-9445(1992)118:4(1039)
  • Frigerio, A., & Mazzà, G. (2014). The rehabilitation of Beauregard dam: The contribution of the numerical modeling. In Z. Gerald & G. Markus (Eds.), ICOLD - 12th International Benchmark Workshop on Numerical Analysis of Dams (pp. 359–368). Graz-Austria: Progressive Media Markets Ltd.
  • Gao, Y., Jin, F., Wang, X., & Wang, J. (2011). Finite element analysis of dam-reservoir interaction using high-order doubly asymptotic open boundary. Mathematical Problems in Engineering, 2011, 1. doi:10.1155/2011/210624
  • Goldgruber, M., Shahriari, S., & Zenz, G. (2013). Influence of damping and different interaction modelling on a high arch damed. Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, VEESD, Vienna, August 2013.
  • Goldgruber, M., Shahriari, S., & Zenz, G. (2015). Dynamic sliding analysis of a gravity dam with fluid-structure-foundation interaction using finite elements and Newmark’s sliding block analysis. Rock Mechanics and Rock Engineering, 48, 2405–2419. doi:10.1007/s00603-015-0714-1
  • Hariri-Ardebili, M. A., Saouma, V. E., & Porter, K. A. (2016). Quantification of seismic potential failure modes in concrete dams. Earthquake Engineering & Structural Dynamics, 45, 979–997. doi:10.1002/eqe.2697
  • ICOLD. (2009). Selecting seismic parameters for large dams. In Guidelines, Bulletin 72, Committee on seismic aspects of dam design (2nd ed.). Brasilia, Brazil.
  • Jin, A.-Y., Pan, J.-W., Wang, J.-T., & Zhang, C. (2019). Effect of foundation models on seismic response of arch dams. Engineering Structures, 188, 578–590. doi:10.1016/j.engstruct.2019.03.048
  • Karalar, M., & Cavusli, M. (2019a). Assessing 3d seismic damage performance of a CFR dam considering various reservoir heights. Earthquakes and Structures, 16, 221–234.
  • Karalar, M., & Cavusli, M. (2019b). Examination of 3d long-term viscoplastic behaviour of a CFR dam using special material models. Geomechanics and Engineering, 17, 119–131.
  • Lau, D. T., Noruziaan, B., & Razaqpur, A. G. (1998). Modelling of contraction joint and shear sliding effects on earthquake response of arch dams. Earthquake Engineering & Structural Dynamics, 27, 1013–1029. doi:10.1002/(SICI)1096-9845(199810)27:10<1013::AID-EQE765>3.0.CO;2-0
  • Lee, J., & Fenves, G. L. (1998a). A plastic-damage concrete model for earthquake analysis of dams. Earthquake Engineering & Structural Dynamics, 27, 937–956. doi:10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5
  • Lee, J., & Fenves, L. G. (1998b). Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124, 892–900. doi:10.1061/(ASCE)0733-9399(1998)124:8(892)
  • Liang, G., Hu, Y., Fan, Q., & Li, Q. (2016). Analysis on valley deformation of Xiluodu high arch dam during impoundment and its influencing factors. Journal of Hydroelectric Engineering, 35, 101–110.
  • Liao, Z., Huang, K., Yang, B., & Yuan, Y. (1984). A transmitting boundary for transient wave analyses. Science in China Series A-Mathematics. Physics, Astronomy & Technological Science, 27, 1063–1076.
  • Lin, G., & Hu, Z. (2005). Earthquake safety assessment of concrete arch and gravity dams. Earthquake Engineering and Engineering Vibration, 4, 251–264. doi:10.1007/s11803-005-0008-9
  • Lin, G., Wang, Y., & Hu, Z. (2012). An efficient approach for frequency-domain and time‐domain hydrodynamic analysis of dam-reservoir systems. Earthquake Engineering & Structural Dynamics, 41, 1725–1749. doi:10.1002/eqe.2154
  • Liu, J., Du, Y., Du, X., Wang, Z., & Wu, J. (2006). 3d viscous-spring artificial boundary in time domain. Earthquake Engineering and Engineering Vibration, 5, 93–102. doi:10.1007/s11803-006-0585-2
  • Liu, Y., Xiang, J., Fan, Q, Li, J., & Ma, X. (2017). Stress impact analysis of valley shrinkage deformation on arch dam. Water Resource and Power, 35, 100–103.
  • Løkke, A., & Chopra, A. K. (2017). Direct finite element method for nonlinear analysis of semi-unbounded dam-water-foundation rock systems. Earthquake Engineering & Structural Dynamics, 46, 1267–1285. doi:10.1002/eqe.2855
  • Lombardi, G. (2004). Ground-water induced settlements in rock masses and consequences for dams. IALAD-Integrity Assessment of Large Concrete Dams Conference, Zurich, 24, 102.1-R-160.
  • Long, Y., Zhang, C., & Jin, F. (2008). Numerical simulation of reinforcement strengthening for high-arch dams to resist strong earthquakes. Earthquake Engineering & Structural Dynamics, 37, 1739–1761. doi:10.1002/eqe.834
  • Lotfi, V., & Espandar, R. (2004). Seismic analysis of concrete arch dams by combined discrete crack and non-orthogonal smeared crack technique. Engineering Structures, 26, 27–37. doi:10.1016/j.engstruct.2003.08.007
  • Lysmer, J., & Kuhlemeyer, R. L. (1969). Finite dynamic model for infinite media. Journal of the Engineering Mechanics Division, 95, 859–878.
  • Marasco, S., & Cimellaro, G. P. (2018). A new energy-based ground motion selection and modification method limiting the dynamic response dispersion and preserving the median demand. Bulletin of Earthquake Engineering, 16, 561–581. doi:10.1007/s10518-017-0232-5
  • Mirzabozorg, H., & Ghaemian, M. (2005). Non-linear behavior of mass concrete in three-dimensional problems using a smeared crack approach. Earthquake Engineering & Structural Dynamics, 34, 247–269. doi:10.1002/eqe.423
  • Niwa, A., & Clough, R. W. (1982). Non-linear seismic response of arch dams. Earthquake Engineering & Structural Dynamics, 10, 267–281. doi:10.1002/eqe.4290100208
  • Omidi, O., & Lotfi, V. (2013). Earthquake response of concrete arch dams: A plastic-damage approach. Earthquake Engineering and Structural Dynamics, 42, 2129–2149.
  • Omidi, O., & Lotfi, V. (2017). Seismic plastic-damage analysis of mass concrete blocks in arch dams including contraction and peripheral joints. Soil Dynamics and Earthquake Engineering, 95, 118–137. doi:10.1016/j.soildyn.2017.01.026
  • Pan, J. (2019). Seismic damage behavior of gravity dams under the effect of concrete inhomogeneity. Journal of Earthquake Engineering, 23, 1-21. doi:10.1080/13632469.2019.1581675
  • Pan, J., Feng, Y., Jin, F., Zhang, C., & Owen, D. R. J. (2014). Comparison of different fracture modelling approaches to gravity dam failure. Engineering Computations, 31, 18–32. doi:10.1108/EC-04-2012-0091
  • Pan, J., Xu, Y., & Jin, F. (2015). Seismic performance assessment of arch dams using incremental nonlinear dynamic analysis. European Journal of Environmental and Civil Engineering, 19, 305–326. doi:10.1080/19648189.2014.960950
  • Pan, J., Xu, Y., Jin, F., & Wang, J. (2015). Seismic stability assessment of an arch dam-foundation system. Earthquake Engineering and Engineering Vibration, 14, 517–526. doi:10.1007/s11803-015-0041-2
  • Pan, J., Xu, Y., Jin, F., & Zhang, C. (2014). A unified approach for long-term behavior and seismic response of AAR-affected concrete dams. Soil Dynamics and Earthquake Engineering, 63, 193–202. doi:10.1016/j.soildyn.2014.03.018
  • Pan, J., Zhang, C., Wang, J., & Xu, Y. (2009). Seismic damage-cracking analysis of arch dams using different earthquake input mechanisms. Science in China Series E: Technological Sciences, 52, 518–529. doi:10.1007/s11431-008-0303-6
  • Pan, J., Zhang, C., Xu, Y., & Jin, F. (2011). A comparative study of the different procedures for seismic cracking analysis of concrete dams. Soil Dynamics and Earthquake Engineering, 31, 1594–1606. doi:10.1016/j.soildyn.2011.06.011
  • Sani, A. A., & Lotfi, V. (2010). Dynamic analysis of concrete arch dams by ideal-coupled modal approach. Engineering Structures, 32, 1377–1383. doi:10.1016/j.engstruct.2010.01.016
  • Sevim, B., Altunisik, A. C., & Bayraktar, A. (2012). Experimental evaluation of crack effects on the dynamic characteristics of a prototype arch dam using ambient vibration tests. Computers & Concrete, 10, 277–294. doi:10.12989/cac.2012.10.3.277
  • Sevim, B., Altunisik, A. C., & Bayraktar, A. (2013). Structural identification of concrete arch dams by ambient vibration tests. Advances in Concrete Construction, 1, 227–237. doi:10.12989/acc2013.1.3.227
  • Tomasin, M., Domaneschi, M., Guerini, C., Martinelli, L., & Perotti, F. (2018). A comprehensive approach to small and large-scale effects of earthquake motion variability. Computers & Structures, 207, 155–170. doi:10.1016/j.compstruc.2017.04.010
  • Valliappan, S., & Chee, C. (2009). Ageing degradation of concrete dams based on damage mechanics concepts. In Y. Yuan, J. Cui, & H. Mang (Eds.), Computational structural engineering (pp. 21–35). Netherlands: Springer.
  • Valliappan, S., Yazdchi, M., & Khalili, N. (1999). Seismic analysis of arch dams-a continuum damage mechanics approach. International Journal for Numerical Methods in Engineering, 45, 1695–1724. doi:10.1002/(SICI)1097-0207(19990820)45:11<1695::AID-NME651>3.0.CO;2-2
  • Wang, J.-T., Jin, A.-Y., Du, X.-L., & Wu, M.-X. (2016). Scatter of dynamic response and damage of an arch dam subjected to artificial earthquake accelerograms. Soil Dynamics and Earthquake Engineering, 87, 93–100. doi:10.1016/j.soildyn.2016.05.003
  • Wang, J.-T., Lv, D.-D., Jin, F., & Zhang, C.-H. (2013). Earthquake damage analysis of arch dams considering dam–water–foundation interaction. Soil Dynamics and Earthquake Engineering, 49, 64–74. doi:10.1016/j.soildyn.2013.02.006
  • Wang, J. T., Zhang, C. H., & Jin, F. (2012). Nonlinear earthquake analysis of high arch dam-water-foundation rock systems. Earthquake Engineering & Structural Dynamics, 41, 1157–1176. doi:10.1002/eqe.1178
  • Westergaard, H. M. (1933). Water pressure on dams during earthquakes. Transactions of the American Society of Civil Engineers, 98, 418–472.
  • Zenz, G. (2013). Theme a fluid structure interaction arch dam – reservoir at seismic loading. In G. Zenz & M. Goldgruber (Eds.), ICOLD Proceedings, 12th International Benchmark Workshop on Numerical Analysis of Dams, Graz, Austria: Austrian National Committee on Large Dams.
  • Zhang, C., Jin, F., Wang, J., Xu, Y., & Pan, J. (2016). Key issues and developments on seismic safety evaluation of high concrete dams. Journal of Hydraulic Engineering, 47, 253–264.
  • Zhang, C., Pan, J., & Wang, J. (2009). Influence of seismic input mechanisms and radiation damping on arch dam response. Soil Dynamics and Earthquake Engineering, 29, 1282–1293.
  • Zhang, C., Wang, G., & Zhao, C. (1988). Seismic wave propagation effects on arch dam response. 9th World Conference on Earthquake Engineering (pp. 367–372). Tokyo-Kyoto, VI.
  • Zhang, C., Xu, Y., Wang, G., & Jin, F. (2000). Non-linear seismic response of arch dams with contraction joint opening and joint reinforcements. Earthquake Engineering & Structural Dynamics, 29, 1547–1566. doi:10.1002/1096-9845(200010)29:10<1547::AID-EQE979>3.0.CO;2-N
  • Zhong, H., Lin, G., Li, H., & Chen, J. (2010). Study on the failure mode of arch dams subjected to earthquakes by model test and numerical simulation. Journal of Hydroelectric Engineering, 4, 025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.