Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 16, 2020 - Issue 10
495
Views
9
CrossRef citations to date
0
Altmetric
Articles

Near fault ground motion effects on seismic resilience of frame structures damaged in Wenchuan earthquake

, &
Pages 1347-1363 | Received 12 Jan 2019, Accepted 07 Sep 2019, Published online: 23 Dec 2019

References

  • Alath, S., & Kunnath, S. K. (1995). Modeling inelastic shear deformations in RC beam–column joints. Proceedings of 10th Conference ASCE Engineering mechanics, May 21–24, University of Colorado at Boulder, Boulder, Colorado, Vol. 2. pp. 822–825.
  • Alonso-Rodríguez, A., & Miranda, E. (2015). Assessment of building behavior under near-fault pulse-like ground motions through simplified models. Soil Dynamics and Earthquake Engineering, 79, 47–58. doi:10.1016/j.soildyn.2015.08.009
  • Baker, J. W. (2007). Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 97(5), 1486–1501. doi:10.1785/0120060255
  • Baradaran Shoraka, M., Yang, T. Y., & Elwood, K. J. (2013). Seismic loss estimation of non-ductile reinforced concrete buildings. Earthquake Engineering & Structural Dynamics, 42(2), 297–310. doi:10.1002/eqe.2213
  • Bentz, E., & Collins, M. P. (2001). Response-2000, user manual. Toronto, Canada: University of Toronto.
  • Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., … Winterfeldt, D. V. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752. doi:10.1193/1.1623497
  • Bruneau, M., & Reinhorn, A. (2007). Exploring the concept of seismic resilience for acute care facilities. Earthquake Spectra, 23(1), 41–62. doi:10.1193/1.2431396
  • Celik, O. C., & Ellingwood, B. R. (2010). Seismic fragilities for non-ductile reinforced concrete frames – role of aleatoric and epistemic uncertainties. Structural Safety, 32(1), 1–12. doi:10.1016/j.strusafe.2009.04.003
  • Champion, C., & Liel, A. (2012). The effect of near-fault directivity on building seismic collapse risk. Earthquake Engineering & Structural Dynamics, 41(10), 1391–1409. doi:10.1002/eqe.1188
  • Chandrasekaran, S., & Banerjee, S. (2016). Retrofit optimization for resilience enhancement of bridges under multihazard scenario. Journal of Structural Engineering, 142(8), C4015012. doi:10.1061/(ASCE)ST.1943-541X.0001396
  • Chang, S.-Y., Li, Y.-F., & Loh, C.-H. (2004). Experimental study of seismic behaviors of as-built and carbon fiber reinforced plastics repaired reinforced concrete bridge columns. Journal of Bridge Engineering, 9(4), 391–402. doi:10.1061/(ASCE)1084-0702(2004)9:4(391)
  • China Academy of Building Research (CABR). (2008). Photo collection of 2008 Wenchuan earthquake damage to buildings. Beijing, China: China Architecture and Building Press.
  • Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010). Framework for analytical quantification of disaster resilience. Engineering Structures, 32(11), 3639–3649. doi:10.1016/j.engstruct.2010.08.008
  • Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010). Seismic resilience of a hospital system. Structure and Infrastructure Engineering, 6(1-2), 127–144. doi:10.1080/15732470802663847
  • Decò, A., Bocchini, P., & Frangopol, D. M. (2013). A probabilistic approach for the prediction of seismic resilience of bridges. Earthquake Engineering & Structural Dynamics, 42(10), 1469–1487. doi:10.1002/eqe.2282
  • Dong, Y., & Frangopol, D. M. (2015). Risk and resilience assessment of bridges under mainshock and aftershocks incorporating uncertainties. Engineering Structures, 83, 198–208. doi:10.1016/j.engstruct.2014.10.050
  • Dong, Y., & Frangopol, D. M. (2016). Performance-based seismic assessment of conventional and base-isolated steel buildings including environmental impact and resilience. Earthquake Engineering & Structural Dynamics, 45(5), 739–756. doi:10.1002/eqe.2682
  • Elwood, K. J. (2004). Modelling failures in existing reinforced concrete columns. Canadian Journal of Civil Engineering, 31(5), 846–859. doi:10.1139/l04-040
  • Erochko, J., Christopoulos, C., Tremblay, R., & Choi, H. (2011). Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7-05. Journal of Structural Engineering, 137(5), 589–599. doi:10.1061/(ASCE)ST.1943-541X.0000296
  • Fang, C., Zhong, Q., Wang, W., Hu, S., & Qiu, C. (2018). Peak and residual responses of steel moment-resisting and braced frames under pulse-like near-fault earthquakes. Engineering Structures, 177(, 579–597. doi:10.1016/j.engstruct.2018.10.013
  • FEMA. (2003). Multi-hazard loss estimation methodology-earthquake model, Hazus-MH 2.1, Technical Manual, Washington, DC.
  • FEMA. (2012). Seismic performance assessment of buildings volume 1-methodology, Technical report FEMA-P58, Washington, DC.
  • Feng, D. C., & Ding, Z. D. (2018). Confined concrete model with strain gradient effect for RC columns under eccentric loading. Magazine of Concrete Research, 70(23), 1189–1204. doi:10.1680/jmacr.18.00040
  • Feng, D. C., Ren, X. D., & Li, J. (2016). Implicit gradient delocalization method for force-based frame element. Journal of Structural Engineering, 142(2), 04015122. doi:10.1061/(ASCE)ST.1943-541X.0001397
  • Feng, D. C., Wang, Z., & Wu, G. (2019). Progressive collapse performance analysis of precast reinforced concrete structures. The Structural Design of Tall and Special Buildings, 28(5), e1588. doi:10.1002/tal.1588
  • Feng, D. C., Wu, G., & Lu, Y. (2018). Finite element modelling approach for precast reinforced concrete beam-to-column connections under cyclic loading. Engineering Structures, 174, 49–66. doi:10.1016/j.engstruct.2018.07.055
  • Feng, D. C., Wu, G., & Lu, Y. (2018). Numerical investigation on the progressive collapse behavior of precast reinforced concrete frame subassemblages. Journal of Performance of Constructed Facilities, 32(3), 04018027. doi:10.1061/(ASCE)CF.1943-5509.0001179
  • Feng, D. C., Xie, S. C., Deng, W. N., & Ding, Z. D. (2019). Probabilistic failure analysis of reinforced concrete beam-column sub-assemblage under column removal scenario. Engineering Failure Analysis, 100, 381–392. doi:10.1016/j.engfailanal.2019.02.004
  • Feng, D. C., & Xu, J. (2018). An efficient fiber beam-column element considering flexure–shear interaction and anchorage bond-slip effect for cyclic analysis of RC structures. Bulletin of Earthquake Engineering, 16(11), 5425–5452. doi:10.1007/s10518-018-0392-y
  • Frangopol, D. M., Dong, Y., & Sabatino, S. (2017). Bridge life-cycle performance and cost: analysis, prediction, optimisation and decision-making. Structure and Infrastructure Engineering, 13(10), 1239–1257. doi:10.1080/15732479.2016.1267772
  • Frangopol, D. M., & Soliman, M. (2016). Life-cycle of structural systems: recent achievements and future directions. Structure and Infrastructure Engineering, 12(1), 1–20. doi:10.1080/15732479.2014.999794
  • Gaetani d'Aragona, M., Polese, M., Elwood, K. J., Baradaran Shoraka, M., & Prota, A. (2017). Aftershock collapse fragility curves for non-ductile RC buildings: a scenario-based assessment. Earthquake Engineering & Structural Dynamics, 46(13), 2083–2102. doi:10.1002/eqe.2894
  • GB 50011. (2010). Code for seismic design of buildings. Beijing: China Architecture and Building.
  • Guo, J. W. W., & Christopoulos, C. (2017). A probabilistic framework for estimating the residual drift of idealized SDOF systems of non-degrading conventional and damped structures. Earthquake Engineering & Structural Dynamics, 47(2), 479–496. doi:10.1002/eqe.2975
  • Huang, Q., Dyanati, M., Roke, D. A., Chandra, A., & Sett, K. (2018). Economic feasibility study of self-Centering concentrically braced frame systems. Journal of Structural Engineering, 144(8), 04018101. doi:10.1061/(ASCE)ST.1943-541X.0002093
  • Hwang, S.-H., & Lignos, D. G. (2017). Effect of modeling assumptions on the earthquake-induced losses and collapse risk of steel-frame buildings with special concentrically braced frames. Journal of Structural Engineering, 143(9), 04017116. doi:10.1061/(ASCE)ST.1943-541X.0001851
  • Jeon, J.-S., Lowes, L. N., DesRoches, R., & Brilakis, I. (2015). Fragility curves for non-ductile reinforced concrete frames that exhibit different component response mechanisms. Engineering Structures, 85, 127–143. doi:10.1016/j.engstruct.2014.12.009
  • Li, X. J., Liu, L., Wang, Y. S., & Yu, T. (2010). Analysis of horizontal strong-motion attenuation in the great 2008 Wenchuan earthquake. Bulletin of the Seismological Society of America, 100(5B), 2440–2449. doi:10.1785/0120090245
  • Lin, C., Hou, S., & Ou, J.-P. (2009). Seismic damage characteristics of multi-aged buildings in Dujiangyan City subjected to Wenchuan earthquake. Journal of Dalian University of Technology, 49(5), 748–753. in Chinese)
  • Li, X., Zhou, Z., Huang, M., Wen, R., Yu, H., Lu, D., … Cui, J. (2008). Preliminary analysis of strong-motion recordings from the magnitude 8.0 Wenchuan, China, earthquake of 12 May 2008. Seismological Research Letters, 79(6), 844–854. doi:10.1785/gssrl.79.6.844
  • Liu, G., & Yang, Q. (2009). Survey and analysis on seismic damage of structures of Dujiangyan in the Wenchuan earthquake. Proceeding of International Conference on Earthquake Engineering-The First Anniversary of Wenehuan Earthquake. 298–302.
  • Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804–1826. doi:10.1061/(ASCE)0733-9445(1988)114:8(1804)
  • Mazza, F., & Vulcano, A. (2010). Nonlinear dynamic response of r.c. framed structures subjected to near-fault ground motions. Bulletin of Earthquake Engineering, 8(6), 1331–1350. doi:10.1007/s10518-010-9180-z
  • Mazzoni, S., McKenna, F., Scott, M. H., & Fenves, G. L. (2006). OpenSees command language manual. Pacific Earthquake Engineering Research (PEER) Center, 264.
  • McCormick, J., Aburano, H., Ikenaga, M., & Nakashima, M. (2008). Permissible residual deformation levels for building structures considering both safety and human elements. Proceedings of the 14th World Conference on Earthquake Engineering, 12–17.
  • Mohammadi, M. H., Massumi, A., & Meshkat Dini, A. (2017a). Near fault effects on RC buildings’ demand in linear and nonlinear analyses. Scientia Iranica, 26(1), 188–201. doi:10.24200/sci.2017.4233
  • Mohammadi, M. H., Massumi, A., & Meshkat Dini, A. (2017b). Performance of RC moment frames with fixed and hinged supports under near-fault ground motions. Earthquakes and Structures, 13(1), 89–101.
  • Monavari, B., & Massumi, A. (2015). Peak horizontal floor accelerations due to near-fault ground motion. Proceedings of the 11th Canadian Conference on Earthquake Engineering, Victoria, Canada.
  • Pan, Y., Ventura, C. E., & Liam Finn, W. D. (2018). Effects of ground motion duration on the seismic performance and collapse rate of light-frame wood houses. Journal of Structural Engineering, 144(8), 04018112. doi:10.1061/(ASCE)ST.1943-541X.0002104
  • Ramirez, C. M., & Miranda, E. (2012). Significance of residual drifts in building earthquake loss estimation. Earthquake Engineering & Structural Dynamics, 41(11), 1477–1493. doi:10.1002/eqe.2217
  • Sezen, H., & Moehle, J. P. (2004). Shear strength model for lightly reinforced concrete columns. Journal of Structural Engineering, 130(11), 1692–1703. doi:10.1061/(ASCE)0733-9445(2004)130:11(1692)
  • Shome, N., & Cornell, C. A. (1999). Probabilistic seismic demand analysis of nonlinear structures, Report No. RMS-35, RMS Program, Stanford University, Stanford, CA.
  • Sun, B., & Zhang, G. (2012). Statistical analysis of the seismic vulnerability of various types of building structures in Wenchuan M8.0 earthquake. China Civil Engineering Journal, 45(5), 26–30. in Chinese)
  • Tirca, L., Serban, O., Lin, L., Wang, M., & Lin, N. (2016). Improving the seismic resilience of existing braced-frame office buildings. Journal of Structural Engineering, 142(8), C4015003. doi:10.1061/(ASCE)ST.1943-541X.0001302
  • TJ 11-78. (1978). Seismic design code for industrial and civil buildings. Beijing: China Building Industry Press.
  • Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31(3), 491–514. doi:10.1002/eqe.141
  • Wang, X., Masaki, K., & Irikura, K. (2011). Building damage criteria from strong ground motion characteristics during the 2008 Wenchuan Earthquake. Journal of Earthquake Engineering, 15(7), 1117–1137. doi:10.1080/13632469.2011.552311
  • Wen, Z., Xie, J., Gao, M., Hu, Y., & Chau, K. (2010). Near-source strong ground motion characteristics of the 2008 Wenchuan earthquake. Bulletin of the Seismological Society of America, 100(5B), 2425–2439. doi:10.1785/0120090266
  • Wen, Y. K., Ellingwood, B. R., & Bracci, J. (2004). Vulnerability function framework for consequence-based engineering. MAE report 04-04. Mid-America Earthquake Center, University of Illinois at Urbana-Champaign.
  • Wu, D., Tesfamariam, S., Stiemer, S. F., & Cui, J. (2015). Comparison of seismic performance of a RC frame building before and after the Wenchuan earthquake in Sichuan province. Journal of Performance of Constructed Facilities, 29(1), 04014038. doi:10.1061/(ASCE)CF.1943-5509.0000466
  • Xie, J.-J., Wen, Z.-P., Li, X.-J., Li, Y.-Q., Lu, H.-S., & Huang, J.-Y. (2012). Analysis of velocity pulses for near-fault strong motions from the Wenchuan earthquake based on wavelet method. Chinese Journal of Geophysics, 55(6), 1963–1972. (in Chinese) doi:10.1002/cjg2.1525
  • Yi, W.-J., Zhou, Y., Hwang, H.-J., Cheng, Z.-J., & Hu, X. (2018). Cyclic loading test for circular reinforced concrete columns subjected to near-fault ground motion. Soil Dynamics and Earthquake Engineering, 112, 8–17. doi:10.1016/j.soildyn.2018.04.026
  • Yuan, Y. (2008). Impact of intensity and loss assessment following the great Wenchuan Earthquake. Earthquake Engineering and Engineering Vibration, 7(3), 247–254. doi:10.1007/s11803-008-0893-9
  • Zhang, P., & Ou, J. (2013). Seismic performance analysis for low-ductile RC frame structures based on IDA method. China Civil Engineering Journal, 46(S2), 25–31. (in Chinese).
  • Zhang, J., & Shu, Z. (2018). Optimal design of isolation devices for mid-rise steel moment frames using performance based methodology. Bulletin of Earthquake Engineering, 16(9), 4315–4338. doi:10.1007/s10518-018-0321-0
  • Zhang, W., Wang, N., & Nicholson, C. (2017). Resilience-based post-disaster recovery strategies for road-bridge networks. Structure and Infrastructure Engineering, 13(11), 1404–1413.
  • Zhao, X., Cai, H., Chen, Z., Gong, H., & Feng, Q. (2016). Assessing urban lifeline systems immediately after seismic disaster based on emergency resilience. Structure and Infrastructure Engineering, 12(12), 1634–1649. doi:10.1080/15732479.2016.1157609
  • Zhao, J., & Sritharan, S. (2007). Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures. ACI Structural Journal, 104(2), 133.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.