Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 16, 2020 - Issue 12
1,564
Views
23
CrossRef citations to date
0
Altmetric
Articles

Railway slab track systems: review and research potentials

ORCID Icon &
Pages 1635-1653 | Received 23 Jul 2019, Accepted 01 Nov 2020, Published online: 12 Feb 2020

References

  • ACCIONA. (2017). D 4.3.2: Demonstration of new monitoring techniques. C4R - Capacity for Rail (Report). http://www.capacity4rail.eu/IMG/pdf/c4r-d4.3.2_demonstration_of_new_monitoring_techniques.pdf
  • Aggestam, E., Nielsen, J. C. O., & Bolmsvik, R. (2018). Simulation of vertical dynamic vehicle–track interaction using a two-dimensional slab track model. Vehicle System Dynamics, 3114, 1–25. doi:10.1080/00423114.2018.1426867
  • Alves Costa, P., Calçada, R., & Silva Cardoso, A. (2012). Track-ground vibrations induced by railway traffic: In-situ measurements and validation of a 2.5D FEM-BEM model. Soil Dynamics and Earthquake Engineering, 32(1), 111–128. doi:10.1016/j.soildyn.2011.09.002
  • Alves Costa, P., Lopes, P., & Cardoso, A. S. (2018). Soil shakedown analysis of slab railway tracks: Numerical approach and parametric study. Transportation Geotechnics, 16, 85–96. doi:10.1016/j.trgeo.2018.07.004
  • Andersen, L., Nielsen, S. R. K., & Krenk, S. (2007). Numerical methods for analysis of structure and ground vibration from moving loads. Computers & Structures, 85(1-2), 43–58. doi:10.1016/j.compstruc.2006.08.061
  • Andrés, A., Gómez, M., & Gutiérrez, L. (2015). Costs and RAMS methodologies (superstructure). Paris, France: C4R - Capacity for Rail (Dissemination Workshop).
  • ARA. (2004). Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures. NCHRP 1-37A, Report, Final Draft. Albuquerque, NM: Applied Research Associates, Inc.
  • Araujo, N. M. (2010). High-speed trains on ballasted railway track - Dynamic stress field analysis (doctoral dissertation). University of Minho, Portugal.
  • Auersch, L. (2005). Dynamics of the railway track and the underlying soil: the boundary-element solution, theoretical results and their experimental verification. Vehicle System Dynamics, 43(9), 671–695. doi:10.1080/00423110412331307663
  • Auersch, L. (2012). Dynamic behavior of slab tracks on homogeneous and layered soils and the reduction of ground vibration by floating slab tracks. Journal of Engineering Mechanics, 138(8), 923–933. doi:10.1061/(ASCE)EM.1943-7889.0000407
  • Auersch, L., & Said, S. (2017). Track-soil dynamics – Calculation and measurement of damaged and repaired slab tracks. Transportation Geotechnics, 12, 1–14. doi:10.1016/j.trgeo.2017.06.003
  • Balendra, T., Chua, K. H., Lo, K. W., & Lee, S. L. (1989). Steady-state vibration of subway-soil- building system. Journal of Engineering Mechanics, 115(1), 145–162. doi:10.1061/(ASCE)0733-9399(1989)115:1(145)
  • Bezin, Y., Farrington, D., Penny, C., Temple, B., & Iwnicki, S. (2010). The dynamic response of slab track constructions and their benefit with respect to conventional ballasted track. Vehicle System Dynamics, 48(sup1), 175–193. doi:10.1080/00423111003693201
  • Bian, X., Chao, C., Jin, W., & Chen, Y. (2011). A 2.5D finite element approach for predicting ground vibrations generated by vertical track irregularities. Journal of Zhejiang University-Science A, 12(12), 885–894. doi:10.1631/jzus.A11GT012
  • Bian, X., Jiang, H., Cheng, C., Chen, Y., Chen, R., & Jiang, J. (2014). Full-scale model testing on a ballastless high-speed railway under simulated train moving loads. Soil Dynamics and Earthquake Engineering, 66, 368–384. doi:10.1016/j.soildyn.2014.08.003
  • Bilow, D., & Randich, G. (2000). Slab track for the next 100 years. In Portland Cement Association (Ed.), The American Railway Engineering and Maintenance-of-way Association - Proceedings of the 2000 Annual Conference (pp. 1–20). Skokie, IL.
  • Blanco-Lorenzo, J. (2011). Dynamic comparison of different types of slab track and ballasted track using a flexible track model. Proceedings of IMechE Part F: Journal of Rail and Rapid Transit, 225(6), 574–592. doi:10.1177/0954409711401516
  • Bongini, E., Müller, R., Garburg, R., & Peringer, A. (2013). Del 3.13: Design guide and technology assessment of the track mitigation measures. RIVAS: Railway Induced vibration abatement solutions, Collaborative project. Retrieved from http://www.rivas-project.eu/fileadmin/documents/D3.13-Guidelines_for_mitigation_measures_on_ballasted_track__curves__switches_and_slab_track_update.pdf
  • CEMOSA, INECO, IST, RFF, SYSTRA, UoH, & TRV. (2014). D1.1.1 Design requirements and improved guidelines for design (track loading, resilience & RAMS). C4R - Capacity for Rail (Report). http://www.capacity4rail.eu/IMG/pdf/c4r_-_d111_-_design_requirements_and_improved_guidelines_v1.1_-_public-2.pdf
  • CEN. (2004). Eurocode 1: Actions on structures - Part 2: Traffic loads on bridges: EN 1991-2. Brussels: European Union.
  • Chapeleau, X., Sedran, T., Cottineau, L. M., Cailliau, J., Taillade, F., Gueguen, I., & Henault, J. M. (2013). Study of ballastless track structure monitoring by distributed optical fiber sensors on a real-scale mockup in laboratory. Engineering Structures, 56, 1751–1757. doi:10.1016/j.engstruct.2013.07.005
  • Cho, Y. K., Kim, S.-M., Chung, W., Kim, J. C., & Oh, H. J. (2014). Effect of steel ratio on behavior of continuously reinforced concrete railway track under environmental loads. KSCE Journal of Civil Engineering, 18(6), 1688–1695. doi:10.1007/s12205-014-1559-y
  • Connolly, D. P., Kouroussis, G., Laghrouche, O., Ho, C. L., & Forde, M. C. (2015). Benchmarking railway vibrations - Track, vehicle, ground and building effects. Construction and Building Materials, 92, 64–81. doi:10.1016/j.conbuildmat.2014.07.042
  • Cooper, J., & Harrison, M. (2002). Development of an alternative design for the West Rail viaducts. Proceedings of the Institution of Civil Engineers - Transport, 153(2), 87–95. doi:10.1680/tran.2002.153.2.87
  • Cox, S. J., Wang, a., Morison, C., Carels, P., Kelly, R., & Bewes, O. G. (2006). A test rig to investigate slab track structures for controlling ground vibration. Journal of Sound and Vibration, 293(3-5), 901–909. doi:10.1016/j.jsv.2005.08.051
  • Crail, S., Reichel, D., Schreiner, U., Lindner, E., Habel, W., Basedau, D. H. F., … Barner, A. (2002). Strain monitoring of a newly developed precast concrete track for high speed railway traffic using embedded fiber-optic sensors. In SPIE, Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems (Vol. 4694, pp. 259–264), San Diego, California.
  • Cross, R., Makeev, A., & Armanios, E. (2006). A comparison of predictions from probabilistic crack growth models inferred from Virkler’s data. Journal of ASTM International, 3(10), 100574. doi:10.1520/JAI100574
  • Cui, F., & Chew, C. H. (2000). The effectiveness of floating slab track system — Part I. Receptance methods. Applied Acoustics, 61(4), 441–453. doi:10.1016/S0003-682X(00)00014-1
  • Dai, F., Thompson, D. J., Zhu, Y., & Liu, X. (2016). Vibration properties of slab track installed on a viaduct. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(1), 235–252. doi:10.1177/0954409714533790
  • Darr, E., & Fiebig, W. (2006). Feste Fahrbahn: Konstruktion und Bauarten für Eusenbahn und Strassenbahn. Berlin: Eurorail Press.
  • De Vos, P. (2016). Railway noise. UIC Report. Europe: State of the art report.
  • Deutsche Bahn, A. G., & Terno, H.-J. (2011). Del. 3.1: State of the art review of mitigation measures on track. http://www.rivas-project.eu/fileadmin/documents/rivas_uic_wp3_d3_1_v01-3_final.pdf
  • Diehl, R. J., Nowack, R., & Hölzl, G. (2000). Solutions for acoustical problems with ballastless track. Journal of Sound and Vibration, 231(3), 899–906. doi:10.1006/jsvi.1999.2534
  • Dieleman, L., Fumey, M., Robinet, A., & Martin, D. (2008). Experimentation of a track section without ballast on the new line of East European TGV. 8th World Congress on Railway Research, South Korea.
  • Duan, X., Hu, J., Bian, X., & Jiang, J. (2018). Dynamic interaction of vehicle-track coupled system under different patterns of uneven settlement. In Environmental Vibrations and Transportation Geodynamics (pp. 565–573). ISE 2016, Singapore.
  • Esveld, C. (2001). Modern railway track (2nd ed.). Zaltbommel, Netherlands: MRT Productions.
  • Esveld, C., & De Man, A. (2003). Use of railway track vibration behaviour for design and maintenance. IABSE Symposium Report, 87(5), 39–45. doi:10.2749/222137803796330022
  • Feng, Q., Chao, H., & Lei, X. (2017). Influence of the seam between slab and CA Mortar of CRTSII ballastless track on vibration characteristics of vehicle-track system. Procedia Engineering, 199, 2543–2548. doi:10.1016/j.proeng.2017.09.259
  • Ferreira, T. M. (2015). Design of railway track substructure modelling the long term thermo-hydro-mechanical behaviour due to traffic and environmental actions (Doctoral dissertation). Instituto Superior Técnico, Portugal.
  • Freitas da Cunha, J. P. (2013). Modelling of ballasted railway tracks for high-speed trains (Doctoral dissertation). University of Minho, Portugal.
  • Fumey, M., Hofmann, C., Godart, P., Trevin, J., Simovic, T., Mißler, M., … Zuber, P. (2002). Feasibility study ballastless track. Infrastructure Commission - Civil Engineering Support Group. UIC Report.
  • Galvín, P., Romero, A., & Domínguez, J. (2010a). Fully three-dimensional analysis of high-speed train-track-soil-structure dynamic interaction. Journal of Sound and Vibration, 329(24), 5147–5163. doi:10.1016/j.jsv.2010.06.016
  • Galvín, P., Romero, A., & Domínguez, J. (2010b). Vibrations induced by HST passage on ballast and non-ballast tracks. Soil Dynamics and Earthquake Engineering, 30(9), 862–873. doi:10.1016/j.soildyn.2010.02.004
  • Gao, G. Y., Chen, Q. S., He, J. F., & Liu, F. (2012). Investigation of ground vibration due to trains moving on saturated multi-layered ground by 2.5D finite element method. Soil Dynamics and Earthquake Engineering, 40, 87–98. doi:10.1016/j.soildyn.2011.12.003
  • Gautier, P.-E. (2015). Slab track: Review of existing systems and optimization potentials including very high speed. Construction and Building Materials, 92, 9–15. doi:10.1016/j.conbuildmat.2015.03.102
  • Gautier, P.-E. (2017). New slab track design and bench testing for dense traffic and high speed. Madrid, Spain: C4R - Capacity for Rail (Dissemination Workshop).
  • Giannakos, K., & Tsoukantas, S. (2009). Design methodology of slab track systems. Advances in Transportation Geotechnics, 585–592. London: Taylor & Francis. 10.1201/9780203885949.ch80.
  • Grassie, S. L. (2012). Squats and squat-type defects in rails: the understanding to date. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 226(3), 235–242. doi:10.1177/0954409711422189
  • Guigou-Carter, C., Villot, M., Guillerme, B., & Petit, C. (2006). Analytical and experimental study of sleeper SAT S 312 in slab track Sateba system. Journal of Sound and Vibration, 293(3-5), 878–887. doi:10.1016/j.jsv.2005.08.053
  • Gupta, S., & Degrande, G. (2010). Modelling of continuous and discontinuous floating slab tracks in a tunnel using a periodic approach. Journal of Sound and Vibration, 329(8), 1101–1125. doi:10.1016/j.jsv.2009.10.037
  • Hussein, M. F. M., & Hunt, H. E. M. (2006). Modelling of floating-slab tracks with continuous slabs under oscillating moving loads. Journal of Sound and Vibration, 297(1-2), 37–54. doi:10.1016/j.jsv.2006.03.026
  • Hussein, M. F. M., & Hunt, H. E. M. (2009). A numerical model for calculating vibration due to a harmonic moving load on a floating-slab track with discontinuous slabs in an underground railway tunnel. Journal of Sound and Vibration, 321(1-2), 363–374. doi:10.1016/j.jsv.2008.09.023
  • Ioannides, A. M. (2006). Concrete pavement analysis: the first eighty years. International Journal of Pavement Engineering, 7(4), 233–249. doi:10.1080/10298430600798481
  • Jang, S. Y., Lee, H. S., Kim, Y. B., Kim, E., Lee, I. W., Kang, Y. S., … Kang, Y. S. (2008). Development of prefabricated concrete slab track systems and trial installation on revenue line. 8th World Congress on Railway Research.
  • Kaewunruen, S., & Remennikov, A. M. (2016). Current state of practice in railway track vibration isolation: an Australian overview. Australian Journal of Civil Engineering, 14(1), 63–71. doi:10.1080/14488353.2015.1116364
  • Khabbaz, H., & Fatahi, B. (2014). A critical and comparative review of ballasted and slab tracks: Where are we heading? In Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance (pp. 1–19). Stirlingshire, Scotland. doi:10.4203/ccp.104.135
  • Kuo, C., Huang, C. H., & Chen, Y.-Y. (2008). Vibration characteristics of floating slab track. Journal of Sound and Vibration, 317(3-5), 1017–1034. doi:10.1016/j.jsv.2008.03.051
  • Lei, X. (2017). High speed railway track dynamics - Models, algorithms and applications (1st ed.). Beijing, China: Science Press.
  • Lei, X., Wu, S., & Zhang, B. (2016). Dynamic analysis of the high speed train and slab track nonlinear coupling system with the cross iteration algorithm. Journal of Nonlinear Dynamics, 2016, 1–17. doi:10.1155/2016/8356160
  • Lei, X., & Zhang, B. (2011). Analysis of dynamic behavior for slab track of high-speed railway based on vehicle and track elements. Journal of Transportation Engineering, 137(4), 227–240. doi:10.1061/(ASCE)TE.1943-5436.0000207
  • Li, D., Hyslip, J., Sussmann, T., & Chrismer, S. (2015). Railway geotechnics. London, UK: CRC Press.
  • Lichtberger, B. (2005). Track compendium (1st ed.). Hamburg, Germany: Eurorail Press.
  • Liu, S., Yu, H., Wang, J., & Wanatowski, D. (2018). Shakedown for slab track substructures with stiffness variation. Geotechnical Research, 5(1), 31–38. doi:10.1680/jgere.17.00018
  • Liu, X., Zhao, P., & Dai, F. (2011). Advances in design theories of high-speed railway ballastless tracks. Journal of Modern Transportation, 19(3), 154–162. doi:10.1007/BF03325753
  • Li, Z. G., & Wu, T. X. (2008). Modelling and analysis of force transmission in floating-slab track for railways. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 222(1), 45–57. doi:10.1243/09544097JRRT145
  • Lombaert, G., Degrande, G., Kogut, J., & François, S. (2006). The experimental validation of a numerical model for the prediction of railway induced vibrations. Journal of Sound and Vibration, 297(3-5), 512–535. doi:10.1016/j.jsv.2006.03.048
  • Lombaert, G., Degrande, G., Vanhauwere, B., Vandeborght, B., & François, S. (2006). The control of ground-borne vibrations from railway traffic by means of continuous floating slabs. Journal of Sound and Vibration, 297(3-5), 946–961. doi:10.1016/j.jsv.2006.05.013
  • Madshus, C., & Kaynia, A. M. (2000). High-speed railway lines on soft ground: dynamic behaviour at critical train speed. Journal of Sound and Vibration, 231(3), 689–701. doi:10.1006/jsvi.1999.2647
  • Markine, V. L., De Man, A. P., & Esveld, C. (2000). Optimization of an embedded rail structure using a numerical technique. Heron, 45(1), 63–74.
  • Matias, S. R. (2014). Modelação Numérica e Dimensionamento de Vias-Férreas em Laje de Betão - Comparação com vias balastradas (MSc Thesis). Instituto Superior Técnico, Portugal.
  • Michas, G. (2012). Slab track systems for high-speed railways (MSc Thesis). KTH, Sweden
  • Nielsen, J. C. O., Ekberg, A., & Lundén, R. (2005). Influence of short-pitch wheel/rail corrugation on rolling contact fatigue of railway wheels. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 219(3), 177–188. doi:10.1243/095440905X8871
  • Nielsen, J. C.O., Lundén, R., Johansson, A., & Vernersson, T. (2003). Train-track interaction and mechanisms of irregular wear on wheel and rail surfaces. Vehicle System Dynamics, 40(1-3), 3–54. doi:10.1076/vesd.40.1.3.15874
  • Nsabimana, E., & Jung, Y.-H. (2015). Dynamic subsoil responses of a stiff concrete slab track subjected to various train speeds: A critical velocity perspective. Computers and Geotechnics, 69, 7–21. doi:10.1016/j.compgeo.2015.04.012
  • Poveda, E., Yu, R. C., Lancha, J. C., & Ruiz, G. (2015). A numerical study on the fatigue life design of concrete slabs for railway tracks. Engineering Structures, 100, 455–467. doi:10.1016/j.engstruct.2015.06.037
  • Professional Standard of the People’s Republic of China (2009). TB10621 - Code for Design of High-speed Railway.
  • Ren, J., Li, X., Yang, R., Wang, P., & Xie, P. (2016). Criteria for repairing damages of CA mortar for prefabricated framework-type slab track. Construction and Building Materials, 110, 300–311. doi:10.1016/j.conbuildmat.2016.02.036
  • Ripke, B. (2010). Design and performance of ballastless track - Sucess criteria and application ranges (High-speed rail course). Instituto Superior Técnico, Portugal.
  • Sañudo, R., Dell ‘Olio, L., Casado, J. A., Carrascal, I. A., & Diego, S. (2016). Track transitions in railways: A review. Construction and Building Materials, 112, 140–157. doi:10.1016/j.conbuildmat.2016.02.084
  • Satoshi, A. (1989). Loading-deformation characteristics of slab track with temperature variation. Railway Summary Report, 10(3), 2–9.
  • Selig, E. T., & Waters, J. M. (1994a). Subgrade Behavior. In T. Telford (Ed.), Track geotechnology and substructure management. London, United Kingdom: Thomas Telford Ltd.
  • Selig, E. T., & Waters, J. M. (1994b). Subgrade Improvement Alternatives. In T. Telford (Ed.), Track geotechnology and substructure management. London, United Kingdom: Thomas Telford Ltd.
  • Shahraki, M., Warnakulasooriya, C., & Witt, K. J. (2015). Numerical study of transition zone between ballasted and ballastless railway track. Transportation Geotechnics, 3, 58–67. doi:10.1016/j.trgeo.2015.05.001
  • Shan, Y., Zhou, S., Zhou, H., Wang, B., Zhao, Z., & Shu, Y. (2017). Iterative computation method of train-load-induced uneven settlement of high-speed railway transition zones. In Transportation Research Board 96th Αnnual Μeeting. Washington, DC. doi:10.3141/2607-02
  • Shanghai Railway Administration. (2017). The 14th China International Modern Railway Technology and Equipment Exhibition: Special subject.
  • Sheng, X., Jones, C. J. C., & Thompson, D. J. (2006). Prediction of ground vibration from trains using the wavenumber finite and boundary element methods. Journal of Sound and Vibration, 293(3-5), 575–586. doi:10.1016/j.jsv.2005.08.040
  • Sheng, X., Zhong, T., & Li, Y. (2017). Vibration and sound radiation of slab high-speed railway tracks subject to a moving harmonic load. Journal of Sound and Vibration, 395, 160–186. doi:10.1016/j.jsv.2017.02.024
  • Shi, L., Cai, Y., Wang, P., & Sun, H. (2016). A theoretical investigation on influences of slab tracks on vertical dynamic responses of railway viaducts. Journal of Sound and Vibration, 374, 138–154.
  • Song, X., Zhao, C., & Zhu, X. (2014). Temperature-induced deformation of CRTS II slab track and its effect on track dynamical properties. Science China Technological Sciences, 57(10), 1917–1924. doi:10.1007/s11431-014-5634-x
  • Springenschmid, R. (1998). Prevention of thermal cracking in concrete at early ages. London, UK: CRC Press.
  • SSF Ingenieure GmbH. (2010). Slab track systems on different substructures. Company brochure.
  • STAIRRS. (2003). STAIRRS - Strategies and tools to assess and implement noise reducing measures for railway systems - Final technical report.
  • Steenbergen, M. J. M. M., Metrikine, a. V., & Esveld, C. (2007). Assessment of design parameters of a slab track railway system from a dynamic viewpoint. Journal of Sound and Vibration, 306(1-2), 361–371. doi:10.1016/j.jsv.2007.05.034
  • Straub, D., & Faber, M. H. (2005). Risk based inspection planning for structural systems. Structural Safety, 27(4), 335–355. doi:10.1016/j.strusafe.2005.04.001
  • Tarifa, M., Zhang, X., Ruiz, G., & Poveda, E. (2015). Full-scale fatigue tests of precast reinforced concrete slabs for railway tracks. Engineering Structures, 100, 610–621. doi:10.1016/j.engstruct.2015.06.016
  • Thompson, D. J. (2009). Railway Noise and Vibration (1st ed.). Southampton: Elsevier.
  • Thompson, D. J., & Gautier, P.-E. (2006). Review of research into wheel/rail rolling noise reduction. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 220(4), 385–408. doi:10.1243/0954409JRRT79
  • Tzanakakis, K. (2013). The railway track and its long term behaviour - A handbook for a railway track of high quality. Heidelberg, Germany: Springer.
  • Van Lier, S. (2000). Τhe vibro-acoustic modelling of slab track with embedded rails. Journal of Sound and Vibration, 231(3), 805–817. doi:10.1006/jsvi.1999.2564
  • Venghaus, H., & Petz, M. (2014). Quiet tracks for sustainable railway infrastructures. D1 - Monitoring of rail roughness, track dynamic properties and average wheel roughness. Investigation of Track Decay Rates (TDR) of Embedded Rails.
  • Verbraken, H., Lombaert, G., & Degrande, G. (2012). Experimental and numerical prediction of railway induced vibration. Journal of Zhejiang University SCIENCE A, 13(11), 802–813. doi:10.1631/jzus.A12ISGT8
  • Vogt, L., Wolffersdorff, P.-A v., & Rehfeld, E. (2005). Behaviour of slab track under extreme stress conditions. In European Slab Track Symposium (pp. 1–29), Brussels, Belgium. http://railtec.illinois.edu/wp/wp-content/uploads/pdf-archive/Steidl-2-27-09.pdf
  • Vossloh Fastening Systems GmbH. (2009). Design of slab track and fastening systems.
  • Wang, M., Cai, C., Zhu, S., & Zhai, W. (2016). Experimental study on dynamic performance of typical nonballasted track systems using a full-scale test rig. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231, 1–12.
  • Williams, B. A., Holder, D., Edwards, J. R., Dersch, M. S., & Barkan, C. (2016). Quantification of the lateral forces in concrete sleeper fastening systems. Proc. IMechE Part F: Journal of Rail and Rapid Transit, 230(7), 1714–1721. doi:10.1177/0954409715616997
  • Xin, T., & Gao, L. (2011). Reducing slab track vibration into bridge using elastic materials in high speed railway. Journal of Sound and Vibration, 330(10), 2237–2248. doi:10.1016/j.jsv.2010.11.023
  • Yang, X., Gu, S., Zhou, S., Yang, J., Zhou, Y., & Lian, S. (2015). Effect of track irregularity on the dynamic response of a slab track under a high-speed train based on the composite track element method. Applied Acoustics, 99, 72–84. doi:10.1016/j.apacoust.2015.05.009
  • Yang, Y., Wu, G., Wu, Z.-S., Jiang, J.-B., & Wang, X.-B. (2015). Structural performance of ballastless track slabs reinforced with BFRP and SFCB. Composites Part B: Engineering, 71, 103–112. doi:10.1016/j.compositesb.2014.11.002
  • Yongjiang, X., Huajian, L., Zhongwei, F., & Ilwaha, L. (2009). Concrete crack case and its damage in ballastless track structure. International Journal of Railway, 2(1), 30–36.
  • Yue, G., Xu, Z., Wang, L., Liu, C., & Zhou, W. (2017). Vibration analysis for slab track at different train speeds using Bayes wavelet denoising. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231(8), 892–901. doi:10.1177/0954409716647417
  • Zhai, W., Liu, P., Lin, J., & Wang, K. (2015). Experimental investigation on vibration behaviour of a CRH train at speed of 350 km/h. International Journal of Rail Transportation, 3(1), 1–16. doi:10.1080/23248378.2014.992819
  • Zhai, W., Wang, S., Zhang, N., Gao, M., Xia, H., Cai, C., & Zhao, C. (2013). High-speed train – track – bridge dynamic interactions – Part II: experimental validation and engineering application. International Journal of Rail Transportation, 1–(1-2), 25–41. doi:10.1080/23248378.2013.791497
  • Zhai, W., Wei, K., Song, X., & Shao, M. (2015). Experimental investigation into ground vibrations induced by very high speed trains on a non-ballasted track. Soil Dynamics and Earthquake Engineering, 72, 24–36. doi:10.1016/j.soildyn.2015.02.002
  • Zhai, W., Zhao, C., Xia, H., Xie, Y., Li, G., Cai, C., … Song, X. (2014). Basic scientific issues on dynamic performance evolution of the high-speed railway infrastructure and its service safety (in Chinese). Scientia Sinica Technologica, 44, 645–660. doi:10.1360/N092014-00192
  • Zhang, X., Burrow, M., & Zhou, S. (2015). An investigation of subgrade differential settlement on the dynamic response of the vehicle-track system. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 0(4800), 1–14. doi:10.1177/0954409715613538
  • Zhou, M. (2011). The influence of slab track and train operation safety on subgrade’s uneven settlement (MSc Thesis). Tongji University, People’s Republic of China
  • Zhuang, Y., & Wang, K. (2017). Three-dimensional shakedown analysis of ballasted railway structures under moving surface loads with different load distributions. Soil Dynamics and Earthquake Engineering, 100, 296–300. doi:10.1016/j.soildyn.2017.06.012
  • Zhu, S., & Cai, C. (2011). Fatigue life prediction of CRTS I ballastless slab track. In ICTE 2011 - Proceedings of the Third International Conference on Transportation Engineering (pp. 1714–1719). ASCE
  • Zhu, S., & Cai, C. (2014a). Interface damage and its effect on vibrations of slab track under temperature and vehicle dynamic loads. International Journal of Non-Linear Mechanics, 58, 222–232. doi:10.1016/j.ijnonlinmec.2013.10.004
  • Zhu, S., & Cai, C. (2014b). Stress intensity factors evaluation for through-transverse crack in slab track system under vehicle dynamic load. Engineering Failure Analysis, 46, 219–237. doi:10.1016/j.engfailanal.2014.09.004
  • Zhu, S., Cai, C., & Spanos, P. D. (2015). A nonlinear and fractional derivative viscoelastic model for rail pads in the dynamic analysis of coupled vehicle–slab track systems. Journal of Sound and Vibration, 335, 304–320. doi:10.1016/j.jsv.2014.09.034
  • Zhu, S., Yang, J., Cai, C., Pan, Z., & Zhai, W. (2017). Application of dynamic vibration absorbers in designing a vibration isolation track at low-frequency domain. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231(5), 546–557. doi:10.1177/0954409716671549
  • Zongqi, B., Gong, Q., Zhuang, K., & Liushan, W. (2018). An implicit-explicit transition method for settlement prediction of high-speed railway subgrade under high-cycle load. In X. Bian, Y. Chen, & X. Ye (Eds.), Environmental Vibrations and Transportation Geodynamics (ISEV) 2016 (pp. 785–800). Singapore: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.