Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 17, 2021 - Issue 1
660
Views
17
CrossRef citations to date
0
Altmetric
Articles

Numerical study of rockfall impact on bridge piers and its effect on the safe operation of high-speed trains

, , , &
Pages 1-19 | Received 03 Jun 2019, Accepted 19 Nov 2019, Published online: 24 Feb 2020

References

  • Auyeung, S., Alipour, A., & Saini, D. (2019). Performance-based design of bridge piers under vehicle collision. Engineering Structures, 191, 752–765. doi:10.1016/j.engstruct.2019.03.005
  • Bhatti, A. (2018). Computational modeling of energy dissipation characteristics of expanded polystyrene (EPS) cushion of reinforce concrete (RC) bridge girder under rockfall impact. International Journal of Civil Engineering, 16, 1635–1642. doi:10.1007/s40999-018-0304-1
  • Bisby, L., & Ranger, M. (2010). Axial–flexural interaction in circular FRP–confined reinforced concrete columns. Construction and Building Materials, 24, 1672–1681. doi:10.1016/j.conbuildmat.2010.02.024
  • Buth, C. E., Brackin, M. S., Williams, W. F., & Fry, G. T. (2011). Collision loads on bridge piers: Phase 2. Report of guidelines for designing bridge piers and abutments for vehicle collisions (Research/Test Report 9-4973-2). College Station, TX: Texas Transportation Institute.
  • Cai, C., He, Q., Zhu, S., Zhai, W., & Wang, M. (2019). Dynamic interaction of suspension-type monorail vehicle and bridge: Numerical simulation and experiment. Mechanical Systems and Signal Processing, 118, 388–407. doi:10.1016/j.ymssp.2018.08.062
  • Chen, Z., Zhai, W., & Tian, G. (2018). Study on the safe value of multi-pier settlement for simply supported girder bridges in high-speed railways. Structure and Infrastructure Engineering, 14, 400–410. doi:10.1080/15732479.2017.1359189
  • Consolazio, G. R., Cook, R. A., & McVay, M. C. (2006). Barge impact testing of the St. George Island Causeway Bridge – Phase III: Physical testing and data interpretation, structures (Research Report No. BC-354 RPWO-76). Gainesville, FL: Engineering and Industrial Experiment Station, University of Florida.
  • Demartino, C., Wu, J. G., & Xiao, Y. (2017). Response of shear-deficient reinforced circular RC columns under lateral impact loading. International Journal of Impact Engineering, 109, 196–213. doi:10.1016/j.ijimpeng.2017.06.011
  • ETAG 27 (2008). Guideline for European technical approval of falling rock protection kits. Brussels: European Organisation for Technical Approvals (EOTA).
  • Fan, W., Guo, W., Sun, Y., Chen, B., & Shao, X. (2018). Experimental and numerical investigations of a novel steel–UHPFRC composite fender for bridge protection in vessel collisions. Ocean Engineering, 165, 1–21. doi:10.1016/j.oceaneng.2018.07.028
  • Fan, W., Yuan, W., Yang, Z., & Fan, Q. (2011). Dynamic demand of bridge structure subjected to vessel impact using simplified interaction model. Journal of Bridge Engineering, 16(1), 117–126. doi:10.1061/(ASCE)BE.1943-5592.0000139
  • Fang, C., Li, Y., Wei, K., Zhang, J., & Liang, C. (2019). Vehicle–bridge coupling dynamic response of sea-crossing railway bridge under correlated wind and wave conditions. Advances in Structural Engineering, 22, 893–906. doi:10.1177/1369433218781423
  • Gholipour, G., Zhang, C., Kang, W., & Mousavi, A. A. (2019). Reliability analysis of girder bridge piers subjected to barge collisions. Structure and Infrastructure Engineering, 15, 1200–1220. doi:10.1080/15732479.2019.1609530
  • Gholipour, G., Zhang, C., & Li, M. (2018). Effects of soil–pile interaction on the response of bridge pier to barge collision using energy distribution method. Structure and Infrastructure Engineering, 14, 1520–1534. doi:10.1080/15732479.2018.1450427
  • Gholipour, G., Zhang, C., & Mousavi, A. A. (2018). Effects of axial load on nonlinear response of RC columns subjected to lateral impact load: Ship-pier collision. Engineering Failure Analysis, 91, 397–418. doi:10.1016/j.engfailanal.2018.04.055
  • Gholipour, G., Zhang, C., & Mousavi, A. A. (2019). Analysis of girder bridge pier subjected to barge collision considering the superstructure interactions: The case study of a multiple-pier bridge system. Structure and Infrastructure Engineering, 15, 392–412. doi:10.1080/15732479.2018.1543710
  • Gholipour, G., Zhang, C., & Mousavi, A. A. (2020). Nonlinear numerical analysis and progressive damage assessment of a cable-stayed bridge pier subjected to ship collision. Marine Structures, 69, 102662. doi:10.1016/j.marstruc.2019.102662
  • Hao, Y., & Hao, H. (2014). Influence of the concrete DIF model on the numerical predictions of RC wall responses to blast loadings. Engineering Structures, 73, 24–38. doi:10.1016/j.engstruct.2014.04.042
  • He, S., Yan, S., Deng, Y., & Liu, W. (2019). Impact protection of bridge piers against rockfall. Bulletin of Engineering Geology and the Environment, 78, 2671–2680. doi:10.1007/s10064-018-1250-5
  • Hubbell, D., & Gauvreau, P. (2018). Frequency domain analysis of train–guideway interaction dynamics. Journal of Structural Engineering, 144, 04018100. doi:10.1061/(ASCE)ST.1943-541X.0002081
  • Kameshwar, S., & Padgett, J. (2018a). Effect of vehicle bridge interaction on seismic response and fragility of bridges. Earthquake Engineering & Structural Dynamics, 47, 697–713. doi:10.1002/eqe.2986
  • Kameshwar, S., & Padgett, J. E. (2018b). Response and fragility assessment of bridge columns subjected to barge-bridge collision and scour. Engineering Structures, 168, 308–319. doi:10.1016/j.engstruct.2018.04.082
  • Kantrales, G. C., Consolazio, G. R., Wagner, D., & Fallaha, S. (2016). Experimental and analytical study of high-level barge deformation for barge–bridge collision design. Journal of Bridge Engineering, 21, 04015039. doi:10.1061/(ASCE)BE.1943-5592.0000801
  • Li, H., Chen, W., & Hao, H. (2019a). Influence of drop weight geometry and interlayer on impact behavior of RC beams. International Journal of Impact Engineering, 131, 222–237. doi:10.1016/j.ijimpeng.2019.04.028
  • Li, H., Chen, W., & Hao, H. (2019b). Dynamic response of precast concrete beam with wet connection subjected to impact loads. Engineering Structures, 191, 247–263. doi:10.1016/j.engstruct.2019.04.051
  • Li, X., Wang, D., Liu, D., Xin, L., & Zhang, X. (2018). Dynamic analysis of the interactions between a low–to–medium–speed maglev train and a bridge: Field test results of two typical bridges. Journal of Rail and Rapid Transit, 232, 2039–2059. doi:10.1177/0954409718758502
  • Lu, Y., & Zhang, L. (2012). Analysis of failure of a bridge foundation under rock impact. Acta Geotechnica, 7(1), 57–68. doi:10.1007/s11440-011-0156-1
  • Madurapperuma, M., & Wijeyewickrema, A. (2012). Performance of reinforced concrete columns impacted by water–borne shipping containers. Advances in Structural Engineering, 15, 1307–1328. doi:10.1260/1369-4332.15.8.1307
  • Malvar, L. (1998). Review of static and dynamic properties of steel reinforcing bars. ACI Materials Journal, 95, 609–616.
  • Malveiro, J., Sousa, C., Ribeiro, D., & Calçada, R. (2018). Impact of track irregularities and damping on the fatigue damage of a railway bridge deck slab. Structure and Infrastructure Engineering, 14, 1257–1268. doi:10.1080/15732479.2017.1418010
  • Olmos, J., & Astiz, M. (2018). Non-linear vehicle–bridge–wind interaction model for running safety assessment of high-speed trains over a high–pier viaduct. Journal of Sound and Vibration, 419, 63–89. doi:10.1016/j.jsv.2017.12.038
  • Sha, Y., & Hao, H. (2013). Laboratory tests and numerical simulations of barge impact on circular reinforced concrete piers. Engineering Structures, 46, 593–605. doi:10.1016/j.engstruct.2012.09.002
  • Shen, J., He, S., & Wu, Y. (2008). Present research status and development trend of rockfall hazards. Journal of Catastrophology, 23, 122–125. doi:10.1016/S1872-5791(08)60057-3
  • Siringoringo, D., & Fujino, Y. (2018). Lateral stability of vehicles crossing a bridge during an earthquake. Journal of Bridge Engineering, 23, 04018012. doi:10.1061/(ASCE)BE.1943-5592.0001211
  • TB 10621. (2014). Code for design of high-speed railways. Beijing: China Railway Publishing House.
  • Ticona Melo, L., Ribeiro, D., Calçada, R., & Bittencourt, T. (2020). Validation of a vertical train–track–bridge dynamic interaction model based on limited experimental data. Structure and Infrastructure Engineering, 16(1), 181–201. doi:10.1080/15732479.2019.1605394
  • Wang, W., & Morgenthal, G. (2018). Reliability analyses of RC bridge piers subjected to barge impact using efficient models. Engineering Structures, 166, 485–495. doi:10.1016/j.engstruct.2018.03.089
  • Wang, Y., Xia, H., Guo, W., Zhang, N., & Wang, S. (2018). Numerical analysis of wind field induced by moving train on HSR bridge subjected to crosswind. Wind and Structures, 27(1), 29–40. doi:10.12989/was.2018.27.1.029
  • Xia, C., Ma, Q., Song, F., Wu, X., & Xia, H. (2018). Dynamic analysis of high-speed railway train–bridge system after barge collision. Structural Engineering and Mechanics, 67(1), 9–20. doi:10.12989/sem.2018.67.1.009
  • Xia, C., Xia, H., & De Roeck, G. (2014). Dynamic response of a train–bridge system under collision loads and running safety evaluation of high-speed trains. Computers & Structures, 140, 23–38. doi:10.1016/j.compstruc.2014.04.010
  • Xia, H., De Roeck, G., & Goicolea, J. (2011). Bridge vibration and controls: New research. New York, NY: Nova Science Publishers
  • Xu, L., & Zhai, W. (2018). Probabilistic assessment of railway vehicle–curved track systems considering track random irregularities. Vehicle System Dynamics, 56, 1552–1576. doi:10.1080/00423114.2018.1424916
  • Yan, P., Zhang, J. H., Fang, Q., & Zhang, Y. D. (2018). Numerical simulation of the effects of falling rock’s shape and impact pose on impact force and response of RC slabs. Construction and Building Materials, 160, 497–504. doi:10.1016/j.conbuildmat.2017.11.087
  • Yan, Q., Sun, B., Liu, X., & Wu, J. (2018). The effect of assembling location on the performance of precast concrete beam under impact load. Advances in Structural Engineering, 21, 1211–1222. doi:10.1177/1369433217737119
  • Yang, Y., Yau, J., & Wu, Y. (2004). Vehicle–bridge interaction dynamics. Singapore: World Scientific Publishing Company
  • Zhai, W., & Xia, H. (2011). Train–track–bridge dynamic interaction: Theory and engineering application. Beijing: Science Press
  • Zhang, C., Gholipour, G., & Mousavi, A. A. (2019). Nonlinear dynamic behavior of simply-supported RC beams subjected to combined impact-blast loading. Engineering Structures, 181, 124–142. doi:10.1016/j.engstruct.2018.12.014
  • Zhang, L., & Huang, J. (2019). Dynamic interaction analysis of the high-speed maglev vehicle/guideway system based on a field measurement and model updating method. Engineering Structures, 180, 1–17. doi:10.1016/j.engstruct.2018.11.031
  • Zhang, X., Liu, R., Cao, Z., Wang, X., & Li, X. (2019). Acoustic performance of a semi-closed noise barrier installed on a high-speed railway bridge: Measurement and analysis considering actual service conditions. Measurement, 138, 386–399. doi:10.1016/j.measurement.2019.02.030
  • Zhang, X., Ruan, L., Zhao, Y., Zhou, X., & Li, X. (2020). A frequency domain model for analysing vibrations in large-scale integrated building–bridge structures induced by running trains. Journal of Rail and Rapid Transit, 234(2), 226–241. doi:10.1177/0954409719841793
  • Zhang, X., Wen, Z., Chen, W., Wang, X., & Zhu, Y. (2019). Dynamic analysis of coupled train–track–bridge system subjected to debris flow impact. Advances in Structural Engineering, 22, 919–934. doi:10.1177/1369433218785643
  • Zhou, D., & Li, R. (2018). Damage assessment of bridge piers subjected to vehicle collision. Advances in Structural Engineering, 21, 2270–2281. doi:10.1177/1369433218772344
  • Zhu, Z., Gong, W., Wang, L., Bai, Y., Yu, Z., & Zhang, L. (2019). Efficient assessment of 3D train–track–bridge interaction combining multi-time-step method and moving track technique. Engineering Structures, 183, 290–302. doi:10.1016/j.engstruct.2019.01.036

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.