Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 17, 2021 - Issue 2
418
Views
20
CrossRef citations to date
0
Altmetric
Articles

Seismic reliability and limit state risk evaluation of plain concrete arch bridges

&
Pages 170-190 | Received 09 Nov 2019, Accepted 13 Feb 2020, Published online: 06 Mar 2020

References

  • Ajamy, A., Asgarian, B., Ventura, C., & Zolfaghari, M. (2018). Seismic fragility analysis of jacket type offshore platforms considering soil-pile-structure interaction. Engineering Structures, 174, 198–211.
  • Apdl, A. M. (2010). Mechanical applications theory reference. ANSYS Release, 13, 1450.
  • Asgarian, B., Sadrinezhad, A., & Alanjari, P. (2010). Seismic performance evaluation of steel moment resisting frames through incremental dynamic analysis. Journal of Constructional Steel Research, 66(2), 178–190. doi:10.1016/j.jcsr.2009.09.001
  • Aydin, A. C., & Özkaya, S. G. (2018). The finite element analysis of collapse loads of single-spanned historic masonry arch bridges (Ordu, Sarpdere bridge). Engineering Failure Analysis, 84, 131–138. doi:10.1016/j.engfailanal.2017.11.002
  • Aytulun, E., Soyoz, S., & Karcioglu, E. (2019). System identification and seismic performance assessment of a stone arch bridge. Journal of Earthquake Engineering, 1–21.
  • Bai, J.-W., Hueste, M. B. D., & Gardoni, P. (2009). Probabilistic assessment of structural damage due to earthquakes for buildings in mid-america. Journal of Structural Engineering, 135(10), 1155–1163. doi:10.1061/(ASCE)0733-9445(2009)135:10(1155)
  • Bakalis, K., Kohrangi, M., & Vamvatsikos, D. (2018). Seismic intensity measures for above‐ground liquid storage tanks. Earthquake Engineering & Structural Dynamics, 47(9), 1844–1863. doi:10.1002/eqe.3043
  • Baker, J. W. (2015). Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra, 31(1), 579–599. doi:10.1193/021113EQS025M
  • Barbieri, D. M. (2019). Two methodological approaches to assess the seismic vulnerability of masonry bridges. Journal of Traffic and Transportation Engineering (English Edition), 6(1), 49–64. doi:10.1016/j.jtte.2018.09.003
  • Billah, A. M., & Alam, M. S. (2014). Seismic performance evaluation of multi-column bridge bents retrofitted with different alternatives using incremental dynamic analysis. Engineering Structures, 62, 105–117. doi:10.1016/j.engstruct.2014.01.005
  • Bommer, J. J., & Crowley, H. (2017). The purpose and definition of the minimum magnitude limit in psha calculations. Seismological Research Letters, 88(4), 1097–1106. doi:10.1785/0220170015
  • Breccolotti, M., Severini, L., Cavalagli, N., Bonfigli, F. M., & Gusella, V. (2018). Rapid evaluation of in-plane seismic capacity of masonry arch bridges through limit analysis. Earthquake and Structures, 15(5), 541–553.
  • Cannizzaro, F., Pantò, B., Caddemi, S., & Caliò, I. (2018). A discrete macro-element method (dmem) for the nonlinear structural assessment of masonry arches. Engineering Structures, 168, 243–256. doi:10.1016/j.engstruct.2018.04.006
  • Caputo, A. C., Paolacci, F., Bursi, O. S., & Giannini, R. (2019). Problems and perspectives in seismic quantitative risk analysis of chemical process plants. Journal of Pressure Vessel Technology, 141(1), 010901. doi:10.1115/1.4040804
  • Casas, J. R. (2011). Reliability-based assessment of masonry arch bridges. Construction and Building Materials, 25(4), 1621–1631. doi:10.1016/j.conbuildmat.2010.10.011
  • CEN. (2005). Eurocode 8: Design of structures for earthquake resistance - Part 2: Bridges. Brussels: European Committee for Standardization.
  • Chen, W.-F. (2007). Plasticity in reinforced concrete. Richmond, VA: Ross Publishing.
  • Cornell, C. A., Jalayer, F., Hamburger, R. O., & Foutch, D. A. (2002). Probabilistic basis for 2000 sac federal emergency management agency steel moment frame guidelines. Journal of Structural Engineering, 128(4), 526–533. doi:10.1061/(ASCE)0733-9445(2002)128:4(526)
  • Da Porto, F., Tecchio, G., Zampieri, P., Modena, C., & Prota, A. (2016). Simplified seismic assessment of railway masonry arch bridges by limit analysis. Structure and Infrastructure Engineering, 12(5), 567–591. doi:10.1080/15732479.2015.1031141
  • De Felice, G. (2009). Assessment of the load-carrying capacity of multi-span masonry arch bridges using fibre beam elements. Engineering Structures, 31(8), 1634–1647. doi:10.1016/j.engstruct.2009.02.022
  • De Santis, S., & De Felice, G. (2014). A fibre beam-based approach for the evaluation of the seismic capacity of masonry arches. Earthquake Engineering & Structural Dynamics, 43(11), 1661–1681. doi:10.1002/eqe.2416
  • Eads, L., Miranda, E., Krawinkler, H., & Lignos, D. 2012. Deaggregation of collapse riske. Paper presented at the 20th Analysis and Computation Specialty Conference (pp. 521–531), Conference Information Structures Congress 2012, March 29–31, 2012, Chicago, Illinois.
  • Eads, L., Miranda, E., Krawinkler, H., & Lignos, D. G. (2013). An efficient method for estimating the collapse risk of structures in seismic regions. Earthquake Engineering & Structural Dynamics, 42(1), 25–41. doi:10.1002/eqe.2191
  • FEMA. (2003). Multi-hazard loss estimation methodology, earthquake model. HAZUSMH MR1 Technical Manual. Washington, DC: Author.
  • FEMA. (2009). Quantification of building seismic performance factors. FEMA P695. Washington, DC: Author.
  • Giugliano, M. T., Longo, A., Montuori, R., & Piluso, V. (2011). Seismic reliability of traditional and innovative concentrically braced frames. Earthquake Engineering & Structural Dynamics, 40(13), 1455–1474. doi:10.1002/eqe.1098
  • Hossain, M. R., Ashraf, M., & Padgett, J. E. (2013). Risk-based seismic performance assessment of yielding shear panel device. Engineering Structures, 56, 1570–1579. doi:10.1016/j.engstruct.2013.07.032
  • Ibarra, L. F., & Krawinkler, H. (2005). Global collapse of frame structures under seismic excitations. Berkeley, CA: Pacific Earthquake Engineering Research Center.
  • IPBO. (2019). Islamic republic of iran, planning and budget organization, bureau of technical execution system. Retrieved from http://iranhazard.mporg.ir
  • Jahangiri, V., & Shakib, H. (2018). Seismic risk assessment of buried steel gas pipelines under seismic wave propagation based on fragility analysis. Bulletin of Earthquake Engineering, 16(3), 1571–1605. doi:10.1007/s10518-017-0260-1
  • Jahangiri, V., Yazdani, M., & Marefat, M. S. (2018). Intensity measures for the seismic response assessment of plain concrete arch bridges. Bulletin of Earthquake Engineering, 16(9), 4225–4248. doi:10.1007/s10518-018-0334-8
  • Jalayer, F., & Cornell, C. A. (2003). A technical framework for probability-based demand and capacity factor (dcfd) seismic formats. Report No. RMS-43, Stanford University, Stanford, CA.
  • Kamath, A. P. (2017). Seismic risk assessment of masonry arch bridges in the United States (Msc thesis). Clemson University, Clemson, SC.
  • Karaton, M., Aksoy, H. S., Sayın, E., & Calayır, Y. (2017). Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels. Engineering Failure Analysis, 79, 408–421. doi:10.1016/j.engfailanal.2017.05.017
  • Kitayama, S., Lee, D., Constantinou, M. C., & Kempner, L. (2017). Probabilistic seismic assessment of seismically isolated electrical transformers considering vertical isolation and vertical ground motion. Engineering Structures, 152, 888–900. doi:10.1016/j.engstruct.2017.10.009
  • Liel, A. B., & Deierlein, G. G. (2008). Assessing the collapse risk of California’s existing reinforced concrete frame structures: Metrics for seismic safety decisions. Dissertation Abstracts International, 69(05), 80–84.
  • Mahmoudi Moazam, A., Hasani, N., & Yazdani, M. (2017). 3d simulation of railway bridges for estimating fundamental frequency using geometrical and mechanical properties. Advabces in Computational Design, 2(4), 257–271.
  • Mahmoudi Moazam, A., Hasani, N., & Yazdani, M. (2018a). Incremental dynamic analysis of small to medium spans plain concrete arch bridges. Engineering Failure Analysis, 91, 12–27. doi:10.1016/j.engfailanal.2018.04.027
  • Mahmoudi Moazam, A., Hasani, N., & Yazdani, M. (2018b). Three-dimensional modelling for seismic assessment of plain concrete arch bridges. Proceedings of the Institution of Civil Engineers - Civil Engineering, 171(3), 135–143. doi:10.1680/jcien.17.00048
  • Mander, J. B., Dhakal, R. P., Mashiko, N., & Solberg, K. M. (2007). Incremental dynamic analysis applied to seismic financial risk assessment of bridges. Engineering Structures, 29(10), 2662–2672. doi:10.1016/j.engstruct.2006.12.015
  • Marefat, M. S., Yazdani, M., & Jafari, M. (2019). Seismic assessment of small to medium spans plain concrete arch bridges. European Journal of Environmental and Civil Engineering, 23(7), 894–915. doi:10.1080/19648189.2017.1320589
  • Medina, R. A., & Krawinkler, H. (2004). Seismic demands for nondeteriorating frame structures and their dependence on ground motions. Stanford: Pacific Earthquake Engineering Research Center.
  • Michiels, T., & Adriaenssens, S. (2018). Form-finding algorithm for masonry arches subjected to in-plane earthquake loading. Computers & Structures, 195, 85–98. doi:10.1016/j.compstruc.2017.10.001
  • Modena, C., Tecchio, G., Pellegrino, C., Da Porto, F., Donà, M., Zampieri, P., & Zanini, M. A. (2015). Reinforced concrete and masonry arch bridges in seismic areas: Typical deficiencies and retrofitting strategies. Structure and Infrastructure Engineering, 11(4), 415–442. doi:10.1080/15732479.2014.951859
  • Moreira, V. N., Fernandes, J., Matos, J. C., & Oliveira, D. V. (2016). Reliability-based assessment of existing masonry arch railway bridges. Construction and Building Materials, 115, 544–554. doi:10.1016/j.conbuildmat.2016.04.030
  • Pelà, L., Aprile, A., & Benedetti, A. (2009). Seismic assessment of masonry arch bridges. Engineering Structures, 31(8), 1777–1788.
  • Pirizadeh, M., & Shakib, H. (2013). Probabilistic seismic performance evaluation of non-geometric vertically irregular steel buildings. Journal of Constructional Steel Research, 82, 88–98. doi:10.1016/j.jcsr.2012.12.012
  • Pourgharibshahi, A., & Taghikhany, T. (2012). Reliability-based assessment of deteriorating steel moment resisting frames. Journal of Constructional Steel Research, 71, 219–230. doi:10.1016/j.jcsr.2011.07.019
  • Rezaeian, S., & Der Kiureghian, A. (2012). Simulation of orthogonal horizontal ground motion components for specified earthquake and site characteristics. Earthquake Engineering & Structural Dynamics, 41(2), 335–353. doi:10.1002/eqe.1132
  • Segura, R., Bernier, C., Monteiro, R., & Paultre, P. (2018). On the seismic fragility assessment of concrete gravity dams in eastern Canada. Earthquake Spectra, 35(1), 211-231. doi:10.1193/012418EQS024M
  • Shakib, H., & Homaei, F. (2017). Probabilistic seismic performance assessment of the soil-structure interaction effect on seismic response of mid-rise setback steel buildings. Bulletin of Earthquake Engineering, 15(7), 2827–2851. doi:10.1007/s10518-017-0087-9
  • Shi, F., Saygili, G., & Ozbulut, O. E. (2018). Probabilistic seismic performance evaluation of SMA-braced steel frames considering SMA brace failure. Bulletin of Earthquake Engineering, 16(12), 5937–5962. doi:10.1007/s10518-018-0415-8
  • Shome, N., & Cornell, C. A. (1999). Probabilistic seismic demand analysis of nonlinear structures (Report No. RMS-35). RMS Program. Stanford, CA: Stanford University.
  • Tecchio, G., Donà, M., & Da Porto, F. (2016). Seismic fragility curves of as-built single-span masonry arch bridges. Bulletin of Earthquake Engineering, 14(11), 3099–3124. doi:10.1007/s10518-016-9931-6
  • Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31(3), 491–514. doi:10.1002/eqe.141
  • Vamvatsikos, D., & Dolšek, M. (2011). Equivalent constant rates for performance-based seismic assessment of ageing structures. Structural Safety, 33(1), 8–18. doi:10.1016/j.strusafe.2010.04.005
  • Wang, J., Dai, K., Yin, Y., & Tesfamariam, S. (2018). Seismic performance-based design and risk analysis of thermal power plant building with consideration of vertical and mass irregularities. Engineering Structures, 164, 141–154. doi:10.1016/j.engstruct.2018.03.001
  • Yazdani, M., Jahdngiri, V., & Marefat, M. S. (2019). Seismic performance assessment of plain concrete arch bridges under near-field earthquakes using incremental dynamic analysis. Engineering Failure Analysis, 106, 104170. doi:10.1016/j.engfailanal.2019.104170
  • Zampieri, P., Amoroso, M., & Pellegrino, C. (2019). The masonry buttressed arch on spreading supported. Structures, 20, 226–236. doi:10.1016/j.istruc.2019.03.008
  • Zampieri, P., Simoncello, N., & Pellegrino, C. (2019). Seismic capacity of masonry arches with irregular abutments and arch thickness. Construction and Building Materials, 201, 786–806. doi:10.1016/j.conbuildmat.2018.12.063
  • Zampieri, P., Zanini, M. A., & Modena, C. (2015). Simplified seismic assessment of multi-span masonry arch bridges. Bulletin of Earthquake Engineering, 13(9), 2629–2646. doi:10.1007/s10518-015-9733-2
  • Zampieri, P., Zanini, M. A., & Zurlo, R. (2014). Seismic behaviour analysis of classes of masonry arch bridges. Key Engineering Materials, 628, 136–142. doi:10.4028/www.scientific.net/KEM.628.136
  • Zhong, J., Jeon, J.-S., & Ren, W.-X. (2018). Risk assessment for a long-span cable-stayed bridge subjected to multiple support excitations. Engineering Structures, 176, 220–230. doi:10.1016/j.engstruct.2018.08.107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.