Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 17, 2021 - Issue 2
1,906
Views
9
CrossRef citations to date
0
Altmetric
Articles

Performance of data-based models for early detection of damage in concrete dams

ORCID Icon, ORCID Icon & ORCID Icon
Pages 275-289 | Received 18 Sep 2019, Accepted 04 Jan 2020, Published online: 10 Mar 2020

References

  • Bowerman, B. L., O’Connell, R. T., & Koehler, A. B. (2005). Forecasting, time series, and regression: An applied approach, vol. 4. South-Western Pub.
  • Bühlmann, M., Vetsch, D. F., & Boes, R. M. (2015). Influence of measuring intervals on goodness of fit of dam behaviour analysis models. In 13th ICOLD Benchmark Workshop on the Numerical Analysis of Dams (pp. 317–325). Switzerland: Lausanne.
  • Cheng, L., & Zheng, D. (2013). Two online dam safety monitoring models based on the process of extracting environmental effect. Advances in Engineering Software, 57, 48–56.
  • Chouinard, L. E., Bennett, D. W., & Feknous, N. (1995). Statistical analysis of monitoring data for concrete arch dams. Journal of Performance of Constructed Facilities, 9(4), 286–301. doi:10.1061/(ASCE)0887-3828(1995)9:4(286)
  • Dai, B., Gu, C., Zhao, E., & Qin, X. (2018). Statistical model optimized random forest regression model for concrete dam deformation monitoring. Structural Control and Health Monitoring, (6), 25. doi:10.1002/stc.2170
  • Dassault Systemes. (2017). Abaqus Online documentation.
  • De Sortis, A., & Paoliani, P. (2007). Statistical analysis and structural identification in concrete dam monitoring. Engineering Structures, 29(1), 110–120. doi:10.1016/j.engstruct.2006.04.022
  • Fabre, J. P., & Hueber, R. (2009). Exploitation of monitoring result to adapt the operation of dams to their behaviour. In Long term behaviour of dams (pp. 347–352). Austria: Graz.
  • Gamse, S., & Oberguggenberger, M. (2016). Assessment of long-term coordinate time series using hydrostatic-season-time model for rock-fill embankment dam. Structural Control and Health Monitoring, 24(1), 1–18. doi:10.1002/stc.1859
  • Geokon (2015). Pendulum readout: Model 6850. Technical Report, Geokon, Lebanon, USA.
  • Geosense (2017). Thermistors: Datasheet. Technical report, Geosense Ltd, Suffolk, England.
  • Hariri-Ardebili, M. A., & Saouma, V. (2015). Quantitative failure metric for gravity dams. Earthquake Engineering & Structural Dynamics, 44(3), 461–480. doi:10.1002/eqe.2481
  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference and prediction (2nd ed.). Springer,.
  • Hellgren, R., Malm, R., & Ansell, A. (2019). Data for: Performance of data-based models for early detection of damage in concrete dams.
  • Hellgren, R., Malm, R., & Nordström, E. (2019). Modeller för övervakning av betongdammar [Models for monitoring of concrete dams]. Technical report, Energiforsk, Stockholm, Sweden.
  • ICOLD’s Committee on Dam Surveillance. (2016). Dam surveillance guide, bulletin 158. Technical report, International Commission on Large Dams (ICOLD), Paris.
  • Jung, I. S., Berges, M., Garrett, J. H., & Poczos, B. (2015). Exploration and evaluation of AR, MPCA and KL anomaly detection techniques to embankment dam piezometer data. Advanced Engineering Informatics, 29(4), 902–917. doi:10.1016/j.aei.2015.10.002
  • Kao, C. Y., & Loh, C. H. (2013). Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural network-based approaches. Structural Control and Health Monitoring, 20(3), 282–303. doi:10.1002/stc.492
  • Krounis, A., Johansson, F., & Larsson, S. (2015). Effects of spatial variation in cohesion over the concrete-rock interface on dam sliding stability. Journal of Rock Mechanics and Geotechnical Engineering, 7(6), 659–667. doi:10.1016/j.jrmge.2015.08.005
  • Léger, P., & Seydou, S. S. (2009). Seasonal thermal displacements of gravity dams located in northern regions. Journal of Performance of Constructed Facilities, 23(3), 166–174. doi:10.1061/(ASCE)0887-3828(2009)23:3(166)
  • Li, F., Wang, Z., & Liu, G. (2013). Towards an error correction model for dam monitoring data analysis based on cointegration theory. Structural Safety, 43, 12–20.
  • Li, X., Li, Y., Lu, X., Wang, Y., Zhang, H., & Zhang, P. (2019). An online anomaly recognition and early warning model for dam safety monitoring data. Structural Health Monitoring, 1–14. pages doi:10.1177/1475921719864265
  • Loh, C. H., Chen, C. H., & Hsu, T. Y. (2011). Application of advanced statistical methods for extracting long-term trends in static monitoring data from an arch dam. Structural Health Monitoring: An International Journal, 10(6), 587–601. doi:10.1177/1475921710395807
  • Lombardi, G., Amberg, F., & Darbre, G. R. (2008). Algorithm for the prediction of functional delays in the behaviour of concrete dams. International Journal on Hydropower and Dams, 15(3), 111–116.
  • Malm, R. (2009). Predicting shear type crack initiation and growth in concrete with non-linear finite element method (Doctoral dissertation) KTH, Structural Design and Bridges.
  • Malm, R. (2016). Guideline for FE analyses of concrete dams. Technical report, Energiforsk, Stockholm, Sweden.
  • Malm, R., & Ansell, A. (2011). Cracking of concrete buttress dam due to seasonal temperature variation. ACI Structural Journal, 108(1), 13–22.
  • Malm, R., Hassanzadeh, M., & Hellgren, R. (2017). Proceedings of the 14th ICOLD International Benchmark Workshop on Numerical Analysis of Dams. TRITA-ABE-RPT-1802001, pp. 720. Stockholm, Sweden. KTH, Concrete Structures, KTH.
  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441. doi:10.1137/0111030
  • Mata, J. (2011). Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models. Engineering Structures, 33(3), 903–910. doi:10.1016/j.engstruct.2010.12.011
  • Mata, J., Schclar Leitão, N., Tavares De Castro, A., & Sá Da Costa, J. (2014). Construction of decision rules for early detection of a developing concrete arch dam failure scenario. A discriminant approach. Computers & Structures, 142, 45–53. doi:10.1016/j.compstruc.2014.07.002
  • Nedushan, B. A. (2002). Multivariate statistical analysis of monitoring data for concrete dams (Doctoral dissertation). McGill University.
  • Nguyen, L. H., & Goulet, J. A. (2018). Anomaly detection with the Switching Kalman Filter for structural health monitoring. Structural Control and Health Monitoring, (4), 25. doi:10.1002/stc.2136
  • Nordström, E., Malm, R., Johansson, F., Ligier, P.-L., & Øyvind, L. (2015). Betongdammars brottförlopp Energiforsk rapport 2015:122 [Failure of concrete dams-literature reviw and potential for development]. Technical report, Energiforsk, Stockholm, Sweden.
  • Oliveira, S., & Faria, R. (2006). Numerical simulation of collapse scenarios in reduced scale tests of arch dams. Engineering Structures, 28(10), 1430–1439. doi:10.1016/j.engstruct.2006.01.012
  • Salazar, F., Morán, R., Toledo, M., & Oñate, E. (2017). Data-based models for the prediction of dam behaviour: A review and some methodological considerations. Archives of Computational Methods in Engineering, 24(1), 1–21. doi:10.1007/s11831-015-9157-9
  • Salazar, F., Toledo, M. Á., González, J. M., & Oñate, E. (2017). Early detection of anomalies in dam performance: A methodology based on boosted regression trees. Structural Control and Health Monitoring, 24(11), e2012–16. doi:10.1002/stc.2012
  • Salazar, F., Toledo, M. A., Oñate, E., & Morán, R. (2015). An empirical comparison of machine learning techniques for dam behaviour modelling. Structural Safety, 56, 9–17. doi:10.1016/j.strusafe.2015.05.001
  • Sevieri, G., Andreini, M., De Falco, A., & Matthies, H. G. (2019). Concrete gravity dams model parameters updating using static measurements. Engineering Structures, 196, 109231. doi:10.1016/j.engstruct.2019.05.072
  • SMHI. (2019). Swedish Meteorological and Hydrological Institute open data.
  • Svensen, D. (2016). Numerical analyses of concrete buttress dams to design dam monitoring (Master dissertation). KTH Royal Institute of Technology.
  • SwissCOLD (2003). Methods of analysis for the prediction and the verification of dam behaviour. Technical report, SwissCOLD, Baden, Switzerland.
  • Tatin, M., Briffau, M., Dufour, F., Simon, A., Fabre, J.-P P., Briffaut, M., … Fabre, J.-P P. (2018). Statistical modelling of thermal displacements for concrete dams: Influence of water temperature profile and dam thickness profile. Engineering Structures, 165, 63–75. doi:10.1016/j.engstruct.2018.03.010
  • Tatin, M., Briffaut, M., Dufour, F., Simon, A., & Fabre, J.-P. (2015). Thermal displacements of concrete dams: Accounting for water temperature in statistical models. Engineering Structures, 91, 26–39. doi:10.1016/j.engstruct.2015.01.047
  • The MathWorks Inc. (2018). MATLAB 2018b.
  • Willm, G., & Beaujoint, N. (1967). Les méthodes de surveillance des barrages au service de la production hydraulique d’Electricité de France, problèmes anciens et solutions nouvelles. In IXth international congress on large dams (pp. 529–550). Istanbul, Turkey: ICOLD.
  • Yu, H., Wu, Z. R., Bao, T. F., & Zhang, L. (2010). Multivariate analysis in dam monitoring data with PCA. Science China Technological Sciences, 53(4), 1088–1097. doi:10.1007/s11431-010-0060-1
  • Zou, J., Bui, K. T. T., Xiao, Y., & Doan, C. V. (2018). Dam deformation analysis based on BPNN merging models. Geo-Spatial Information Science, 21(2), 149–157. doi:10.1080/10095020.2017.1386848