1,013
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Framework for estimating the risk and resilience of road networks with bridges and embankments under both seismic and tsunami hazards

, ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 494-514 | Received 19 Feb 2020, Accepted 20 May 2020, Published online: 24 Nov 2020

References

  • Abe, M., Yoshida, J., Fujino, Y., Morishige, Y., Uno, S., & Usami, S. (2004). Experimental investigation of ultimate behavior of metal bridge bearings under seismic loading. Journal of Japan Society of Civil Engineers, 773(773), 63–78 (in Japanese).
  • Adachi, Y., & Unjoh, S. (2000). Effect of variation of member strength and stiffness on seismic response of isolated bridge. Proceedings of the 55th Annual Conference of the Japan Society of Civil Engineers, I-B223, Sendai, Japan, 446–447 (in Japanese).
  • Akgül, F., & Frangopol, D. M. (2003). Rating and Reliability of Existing Bridges in a Network. Journal of Bridge Engineering, 8(6), 383–393. doi:10.1061/(ASCE)1084-0702(2003)8:6(383)
  • Akiyama, M., Frangopol, D. M., & Suzuki, M. (2012). Integration of the effects of airborne chlorides into reliability-based durability design of reinforced concrete structures in a marine environment. Structure and Infrastructure Engineering, 8(2), 125–134. doi:10.1080/15732470903363313
  • Akiyama, M., Matsuzaki, M., Dang, D.H., & Suzuki, M. (2012). Reliability-based capacity design for reinforced concrete bridge structures. Structure and Infrastructure Engineering, 8(2), 125–1107. doi:10.1080/15732470903363313
  • Akiyama, M., Frangopol, D.M., Arai, M., & Koshimura, S. (2013). Reliability of bridges under tsunami hazard: Emphasis on the 2011 Tohoku-oki earthquake. Earthquake Spectra, 29(1_suppl), S295–S314.
  • Akiyama, M., Frangopol, D.M., & Mizuno, K. (2014). Performance analysis of Tohoku-Shinkansen viaducts affected by the 2011 Great East Japan earthquake. Structure and Infrastructure Engineering, 10(9), 1228–1247.
  • Akiyama, M., Frangopol, D.M., & Ishibashi, H. (2020). Toward life-cycle reliability-, risk-, and resilience-based design and assessment of bridges and bridge networks under independent and interacting hazards. Structure and Infrastructure Engineering, 16(1), 26–50. doi:10.1080/15732479.2019.1604770
  • ASCE. (2016). Minimum design loads and associated criteria for buildings and other structures. ASCE/SEI (pp. 7–16). Reston, VA: Author.
  • Aydin, N.Y., Duzgun, H.S., Heinimann, H.R., Wenzel, F., & Gnyawali, K.R. (2018). Framework for improving the resilience and recovery of transportation networks under geohazard risks. International Journal of Disaster Risk Reduction, 31, 832–843. doi:10.1016/j.ijdrr.2018.07.022
  • Bocchini, P., & Frangopol, D.M. (2012). Restoration of bridge networks after an earthquake: Multicriteria intervention optimization. Earthquake Spectra, 28(2), 427–455. doi:10.1193/1.4000019
  • Brito, M. B., Ishibashi, H., & Akiyama, M. (2019). Shaking table tests of a reinforced concrete bridge pier with a low‐cost sliding pendulum system. Earthquake Engineering & Structural Dynamics, 48(3), 366–386. doi:10.1002/eqe.3140
  • Brito, M. B., Akiyama, M., Ichikawa, Y., Yamaguchi, H., Honda, R., & Ishigaki, N. (2020). Bidirectional shaking table tests of a low‐cost friction sliding system with flat‐inclined surfaces. Earthquake Engineering & Structural Dynamics, 49(8), 817–837. doi:10.1002/eqe.3266
  • Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O'Rourke, T. D., Reinhorn, A. M., … von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752. doi:10.1193/1.1623497
  • Bureau of Public Roads. (1964). Traffic assignment manual. Washington, DC: Urban Planning Division, US Department of Commerce.
  • Cabinet Office, Government of Japan. (2012a). Investigative commission on the modeling of giant earthquake caused by Nankai Trough earthquake: Modeling of seismic fault. Tokyo, Japan. Author. Retrieved from http://www.bousai.go.jp/jishin/nankai/model/pdf/20120829_2nd_report05.pdf
  • Cabinet Office, Government of Japan. (2012b). Investigative commission on the modeling of giant earthquake caused by Nankai Trough earthquake: Modeling of tsunami fault. Tokyo, Japan. Author. Retrieved from http://www.bousai.go.jp/jishin/nankai/model/pdf/20120829_2nd_report01.pdf
  • Capozzo, M., Rizzi, A., Cimellaro, G.P., Domaneschi, M., Barbosa, A., & Cox, D. (2019). Multi-hazard resilience assessment of a coastal community due to offshore earthquakes. Journal of Earthquake and Tsunami, 13(02), 1950008.
  • Carey, T.J., Mason, H.B., Barbosa, A.R., & Scott, M.H. (2019). Multihazard earthquake and tsunami effects on soil-foundation-bridge systems. Journal of Bridge Engineering, 24(4), 04019004.
  • Central Disaster Management Council. (2003). Study meeting for the Nankai Trough earthquake: Anticipated damage caused by Nankai trough earthquake. Tokyo, Japan. Author. Retrieved from http://www.bousai.go.jp/jishin/nankai/taisaku_wg/pdf/20130528_houkoku_s2.pdf
  • Chang, S.E., Shinozuka, M., & Moore, J.E. (2000). Probabilistic earthquake scenarios: Extending risk analysis methodologies to spatially distributed systems. Earthquake Spectra, 16(3), 557–572. doi:10.1193/1.1586127
  • Chock, G., Yu, G., Thio, H.K., & Lynett, P.J. (2016). Target structural reliability analysis for tsunami hydrodynamic loads of the ASCE 7 standard. Journal of Structural Engineering, 142(11), 04016092. doi:10.1061/(ASCE)ST.1943-541X.0001499
  • Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010). Framework for analytical quantification of disaster resilience. Engineering Structures, 32(11), 3639–3649. doi:10.1016/j.engstruct.2010.08.008
  • Coastal Development Institute of Technology. (2010). CADMAS-SURF/3D Research and development of numerical wave tank. Coastal Technology Library, 39, 1–235.
  • Committee of Infrastructure Planning and management, Japan Society of Civil Engineers. (2006). Theory and application of road travel demand forecasting (Part II) Development of user equilibrium assignment model. Tokyo, Japan. Author.
  • Dao, M.H., & Tkalich, P. (2007). Tsunami propagation modelling-a sensitivity study. Natural Hazards and Earth System Sciences, 7(6), 741–754. doi:10.5194/nhess-7-741-2007
  • Decò, A., & Frangopol, D.M. (2011). Risk assessment of highway bridges under multiple hazards. Journal of Risk Research, 14(9), 1057–1089. doi:10.1080/13669877.2011.571789
  • Decò, A., Bocchini, P., & Frangopol, D.M. (2013). A probabilistic approach for the prediction of seismic resilience of bridges. Earthquake Engineering & Structural Dynamics, 42(10), 1469–1487. doi:10.1002/eqe.2282
  • Dong, Y., & Frangopol, D.M. (2016). Probabilistic time dependent multihazard life cycle assessment and resilience of bridges considering climate change. Journal of Performance of Constructed Facilities, 30(5), 04016034. doi:10.1061/(ASCE)CF.1943-5509.0000883
  • Dong, Y., & Frangopol, D.M. (2017). Probabilistic assessment of an interdependent healthcare-bridge network system under seismic hazard. Structure and Infrastructure Engineering, 13(1), 160–170. doi:10.1080/15732479.2016.1198399
  • Frangopol, D.M., & Estes, A.C. (1997). Lifetime bridge maintenance strategies based on system reliability. Structural Engineering International, IABSE, 7(3), 193 –198.
  • Frangopol, D.M., & Das, P.C. (1999). Management of bridge stocks based on future reliability and maintenance costs. Current and Future Trends in Bridge Design, Construction, and Maintenance, P.C. Das, D.M. Frangopol, and A.S. Nowak, eds., The Institution of Civil Engineers, Thomas Telford, London, 45.
  • Frangopol, D.M., & Bocchini, P. (2011). Resilience as optimization criterion for the bridge rehabilitation of a transportation network subject to earthquake. Proceedings of the ASCE Structures Congress, Las Vegas, Nevada, April 14–16; in Structures Congress 2011, D. Ames, D., T.L. Droessler, & M. Hoit, M., eds., ASCE, CD-ROM, 2044-2055. doi:10.1061/41171(401)178
  • Goda, K., Campbell, G., Hulme, L., Ismael, B., Ke, L., Marsh, R., … Wilkinson, S. (2016). The 2016 Kumamoto earthquakes: Cascading geological hazards and compounding risks. Frontiers in Built Environment, 2(19), 1–23.
  • Goda, K., Mori, N., & Yasuda, T. (2019). Rapid tsunami loss estimation using regional inundation hazard metrics derived from stochastic tsunami simulation. International Journal of Disaster Risk Reduction, 40, 101152. doi:10.1016/j.ijdrr.2019.101152
  • Goto, C., Ogawa, Y., Shuto, N., & Imamura, F. (1997). Numerical method of tsunami simulation with the leap-frog scheme. IUGG/IOC Time Project. Intergovernmental Oceanographic Commission, Manuals and Guides 35, UNESCO.
  • Goto, H., & Morikawa, H. (2012). Ground motion characteristics during the 2011 off the Pacific Coast of Tohoku Earthquake. Soil and Foundations, 52(5), 769–779.
  • Guo, A., Liu, Z., Li, S., & Li, H. (2017). Seismic performance assessment of highway bridge networks considering post disaster traffic demand of a transportation system in emergency conditions. Structure and Infrastructure Engineering, 13(12), 1523–1537. doi:10.1080/15732479.2017.1299770
  • Hashimoto, S., Abe, M., & Fujino, Y. (2005). Damage analysis of Hanshin Expressway viaducts during 1995 Kobe earthquake. III: Three-span continuous girder bridges. Journal of Bridge Engineering, 10(1), 61–68. doi:10.1061/(ASCE)1084-0702(2005)10:1(61)
  • Headquarters for Earthquake Research Promotion. (2013). Long-term evaluation of Nankai trough earthquakes. Tokyo, Japan. Author. Retrieved from https://www.jishin.go.jp/regional_seismicity/rs_kaiko/k_nankai/
  • Headquarters for Earthquake Research Promotion. (2017). Strong ground motion prediction method for earthquakes with specified source faults (“Recipe”). Tokyo, Japan. Author. https://www.jishin.go.jp/main/chousa/17_yosokuchizu/recipe.pdf
  • Japan Road Association. (1964). Specification for steel highway bridges. Tokyo, Japan: Maruzen.
  • Japan Road Association. (1996). Specification for highway bridges. Part V: Seismic design. Tokyo, Japan: Maruzen.
  • Kawashima, K., Gregory, A.M., Hoshikuma, J., & Nagaya, K. (1998). Residual displacement response spectrum. Journal of Structural Engineering, 124(5), 523–530. doi:10.1061/(ASCE)0733-9445(1998)124:5(523)
  • Klise, K.A., Bynum, M., Moriarty, R., & Murray, R. (2017). A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study. Environmental Modelling & Software: With Environment Data News, 95, 420–431. doi:10.1016/j.envsoft.2017.06.022
  • Kotani, M., Imamura, F., & Shuto, N. (1998). Tsunami run-up simulation and damage estimation using GIS. Proceedings of Coastal Engineering, 45(2), 356–360 (in Japanese).
  • Maeda, T., Okamoto, M., & Tanimura, Y. (2009). Evaluation method of deformation capacity for reinforced concrete retrofitted with steel jacketing. Proceedings of the Japan Concrete Institute, 31(2), 1087–1092 (in Japanese).
  • Mechler, R. (2016). Reviewing estimates of the economic efficiency of disaster risk management: Opportunities and limitations of using risk-based cost–benefit analysis. Natural Hazards, 81(3), 2121–2147.
  • Mili, R.R., Hosseini, K.A., & Izadkhah, Y.O. (2018). Developing a holistic model for earthquake risk assessment and disaster management interventions in urban fabrics. International Journal of Disaster Risk Reduction, 27, 355–365.
  • Ministry of Land, Infrastructure, Transport and Tourism, Japan. (2018). Manual of cost-benefit analysis. Tokyo, Japan. Author. Retrieved from http://www.mlit.go.jp/road/ir/hyouka/plcy/kijun/ben-eki_h30_2.pdf
  • Mori, Y., Miyatake, H., Kubo, T., & Inoue, G. (2016). Study on new restored technology for large-scale sediment disaster. Journal of Japan Society of Civil Engineers, Ser. F4 (Construction and Management), 72(4), I_77–I_87 (in Japanese).
  • National Institute for Land and Infrastructure Management, Ministry of Land, Infrastructure, Transport and Tourism, Japan. (2007). Study on the policy for improving earthquake disaster management of road administrators. (Technical Note of National Institute for Land and Infrastructure Management, No. 357, pp. 49–51). Ibaraki, Japan. Author. http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0357pdf/ks0357020.pdf
  • National Institute for Land and Infrastructure Management, Ministry of Land, Infrastructure, Transport and Tourism, Japan. (2018). Essential points to construct overtopping-resistant coastal dike during tsunami. (Technical Note of National Institute for Land and Infrastructure Management, No. 1035, pp. 33–35). Ibaraki, Japan. Author. http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn1035pdf/ks1035.pdf
  • Nogami, Y., Murono, Y., & Sato, T. (2008). Nonlinear hysteresis model considering strength degradation by cyclic loading for RC members. Quarterly Report of RTRI, 49(4), 227–231. doi:10.2219/rtriqr.49.227
  • Nojima, N., & Kato, H. (2013). Spatio-temporal analysis of traffic volumes on highway networks -Comparison of the Great East Japan earthquake disaster and the Great Hanshin-Awaji earthquake disaster. Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering & Earthquake Engineering), 69(4), I_121–I_133 (in Japanese).
  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.
  • Ohno, S., Ohta, T., Ikeura, T., & Takemura, M. (1993). Revision of attenuation formula considering the effect of fault size to evaluate strong motion spectra in near field. Tectonophysics, 218(1–3), 69–81. doi:10.1016/0040-1951(93)90260-Q
  • Park, H., Alam, M.S., Cox, D.T., Barbosa, A.R., & van de Lindt, J.W. (2019). Probabilistic seismic and tsunami damage analysis (PSTDA) of the Cascadia Subduction Zone applied to Seaside. International Journal of Disaster Risk Reduction, 35, 101076. doi:10.1016/j.ijdrr.2019.101076
  • Petrone, C., Rossetto, T., Baiguera, M., De la Barra Bustamante, C., & Ioannou, I. (2020). Fragility functions for a reinforced concrete structure subjected to earthquake and tsunami in sequence. Engineering Structures, 205, 110120. doi:10.1016/j.engstruct.2019.110120
  • Rose, A. (2004). Defining and measuring economic resilience to disasters. Disaster Prevention and Management: An International Journal, 13(4), 307–314.
  • Schipper, E.L.F., Thomalla, F., Vulturius, G., Davis, M., & Johnson, K. (2016). Linking disaster risk reduction, climate change and development. International Journal of Disaster Resilience in the Built Environment, 7(2), 216–228. doi:10.1108/IJDRBE-03-2015-0014
  • Shinoda, M. (2007). Quasi-Monte Carlo simulation with low-discrepancy sequence for reinforced soil slopes. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 393–404.
  • Shinoda, M., Miyata, Y., Yonezawa, T., & Hironaka, J. (2010). Seismic life cycle cost analysis of geosynthetics reinforced and unreinforced earth slope. Geosynthetics Engineering Journal, 25, 189–196 (in Japanese).
  • Shiraki, N., Shinozuka, M., Moore, J.E., Chang, S.E., Kameda, H., & Tanaka, S. (2007). System risk curves: Probabilistic performance scenarios for highway networks subject to earthquake damage. Journal of Infrastructure Systems, 13(1), 43–54. doi:10.1061/(ASCE)1076-0342(2007)13:1(43)
  • Shoji, G., Fujino, Y., & Abe, M. (1997). Optimal allocation of earthquake-induced damage for elevated highway bridges. Journal of Japan Society of Civil Engineer, 569(563), 79–94 (in Japanese).
  • Shuto, N. (2001). Traffic hinderance after tsunamis. In G. T. Hebenstreit (Ed.), Tsunami research at the end of a critical decade (vol. 18, pp. 65–74). Dordrecht, Germany: Springer Science+Business Media.
  • Si, H., & Midorikawa, S. (1999). New attenuation relationships for peak ground acceleration and velocity considering effects of fault type and site condition. Journal of Structural and Construction Engineering (Transactions of AIJ), 64(523), 63–70 (in Japanese).
  • Stein, S.M., Young, G.K., Trent, R.E., & Pearson, D.R. (1999). Prioritizing scour vulnerable bridges using risk. Journal of Infrastructure Systems, 5(3), 95–101. doi:10.1061/(ASCE)1076-0342(1999)5:3(95)
  • Stewart, M.G., & Deng, X. (2015). Climate impact risks and climate adaptation engineering for built infrastructure. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 1(1), 04014001. doi:10.1061/AJRUA6.0000809
  • Subcommittee on Analysis of Damaged Bridge due to the Great East Japan Earthquake, Japan Society of Civil Engineers. (2015). Final report. Part II: Damage analysis due to tsunami pp. 1–391). Tokyo, Japan. Author.
  • Sugawara, D., & Goto, K. (2012). Numerical modeling of the 2011 Tohoku-oki tsunami in the offshore and onshore of Sendai Plain, Japan. Sedimentary Geology, 282, 110–123.
  • Tabandeh, A., Gardoni, P., Murphy, C., & Myers, N. (2019). Societal risk and resilience analysis: Dynamic Bayesian Network formulation of a capability approach. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 5(1), 04018046. doi:10.1061/AJRUA6.0000996
  • Tokida, K., & Oda, K. (2009). Future views on seismic performance-based design, reinforcement and management of road embankment. Doboku Gakkai Ronbunshuu C, 65(4), 857–873 (in Japanese).
  • Yang, S.-I., Frangopol, D. M., & Neves, L. C. (2006). Optimum maintenance strategy for deteriorating bridge structures based on lifetime functions. Engineering Structures, 28(2), 196–206. doi:10.1016/j.engstruct.2005.06.024.
  • Yang, D. Y., & Frangopol, D. M. (2018). Risk-Informed Bridge Ranking at Project and Network Levels. Journal of Infrastructure Systems, 24(3), 04018018 doi:10.1061/(ASCE)IS.1943-555X.0000430.
  • Yang, D.Y., & Frangopol, D.M. (2020). Life-cycle management of deteriorating bridge networks with network-level risk bounds and system reliability analysis. Structural Safety, 83, 101911. doi:10.1016/j.strusafe.2019.101911
  • Yanweerasak, T., Pansuk, W., Akiyama, M., & Frangopol, D. M. (2018). Life-cycle reliability assessment of reinforced concrete bridges under multiple hazards. Structure and Infrastructure Engineering, 14(7), 1011–1024. doi:10.1080/15732479.2018.1437640.
  • Yilmaz, T., Banerjee, S., & Johnson, P.A. (2016). Performance of two real-life california bridges under regional natural hazards. Journal of Bridge Engineering, 21(3), 04015063. doi:10.1061/(ASCE)BE.1943-5592.0000827
  • Zhang, X., & Miller-Hooks, E. (2015). Scheduling short-term recovery activities to maximize transportation network resilience. Journal of Computing in Civil Engineering, 29(6), 04014087. doi:10.1061/(ASCE)CP.1943-5487.0000417
  • Zhu, B., & Frangopol, D.M. (2016). Time-dependent risk assessment of bridges based on cumulative-time failure probability. Journal of Bridge Engineering, 21(12), 06016009. doi:10.1061/(ASCE)BE.1943-5592.0000977

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.