1,205
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Performance-based decision-making of buildings under seismic hazard considering long-term loss, sustainability, and resilience

ORCID Icon, ORCID Icon & ORCID Icon
Pages 454-470 | Received 01 Feb 2020, Accepted 03 Oct 2020, Published online: 17 Nov 2020

References

  • ACI-318. (2011). Building code requirements for structural concrete. ACI. Farmington Hills, MI, USA.
  • Akiyama, M., Frangopol, D. M., & Ishibashi, H. (2020). Toward life-cycle reliability-, risk-and resilience-based design and assessment of bridges and bridge networks under independent and interacting hazards: Emphasis on earthquake, tsunami and corrosion. Structure and Infrastructure Engineering, 16(1), 26–50.
  • Almufti, I., & Willford, M. (2013). REDi™ rating system: Resilience based earthquake design initiative for the next generation of buildings (Version 1.0). Arup.
  • Anwar, G. A., & Dong, Y. (2020). Seismic resilience of retrofitted RC buildings. Earthquake Engineering and Engineering Vibration, 19(3), 561–571. doi:10.1007/s11803-020-0580-z
  • Anwar, G. A., Dong, Y., & Zhai, C. (2020). Performance-based probabilistic framework for seismic risk, resilience, and sustainability assessment of reinforced concrete structures. Advances in Structural Engineering, 23(7), 1454–1472. doi:10.1177/1369433219895363
  • Architecture 2030. (2019). The 2030 challenge for products. Santa Fee, New Mexico: Architecture 2030. Retrieved August 20, 2019, from http://www.architecture2030.org/2030_challenge/products.
  • Asadi, E., Salman, A. M., & Li, Y. (2019). Multi-criteria decision-making for seismic resilience and sustainability assessment of diagrid buildings. Engineering Structures, 191, 229–246. doi:10.1016/j.engstruct.2019.04.049
  • ASCE-41-13. (2013). Seismic evaluation and retrofit of existing buildings. ASCE. Reston, VA, USA
  • Baker, J. W. (2015). Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra, 31(1), 579–599.
  • Bocchini, P., Frangopol, D. M., Ummenhofer, T., & Zinke, T. (2014). Resilience and sustainability of civil infrastructure: Toward a unified approach. Journal of Infrastructure Systems, 20(2), 4014004.
  • Brown, C., Milke, M., & Seville, E. (2011). Disaster waste management: A review article. Waste Management (New York, N.Y.), 31(6), 1085–1098. doi:10.1016/j.wasman.2011.01.027
  • Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O'Rourke, T. D., Reinhorn, A. M., … von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752. doi:10.1193/1.1623497
  • Bruneau, M., & Reinhorn, A. (2007). Exploring the concept of seismic resilience for acute care facilities. Earthquake Spectra, 23(1), 41–62. doi:10.1193/1.2431396
  • Calvi, G. M., Pinho, R., Magenes, G., Bommer, J. J., Restrepo-Vélez, L. F., & Crowley, H. (2006). Development of seismic vulnerability assessment methodologies over the past 30 years. ISET Journal of Earthquake Technology, 43(3), 75–104.
  • Cardone, D., Sullivan, T., Gesualdi, G., & Perrone, G. (2017). Simplified estimation of the expected annual loss of reinforced concrete buildings. Earthquake Engineering and Structural Dynamics, 46(12), 2009–2032.
  • Caspeele, R., Frangopol, D. M., & Tsompanakis, Y. (2020). Life-cycle, risk, resilience and sustainability of civil infrastructure. Structure and Infrastructure Engineering, 16(4), 517–519. doi:10.1080/15732479.2020.1723272
  • Caterino, N., Iervolino, I., Manfredi, G., & Cosenza, E. (2009). Comparative analysis of multi-criteria decision-making methods for seismic structural retrofitting. Computer-Aided Civil and Infrastructure Engineering, 24(6), 432–445. doi:10.1111/j.1467-8667.2009.00599.x
  • Chang, J.-R., Chen, D.-H., & Hung, C.-T. (2005). Selecting preventive maintenance treatments in Texas: using the technique for order preference by similarity to the ideal solution for specific pavement study–3 sites. Transportation Research Record: Journal of the Transportation Research Board, 1933(1), 62–71. doi:10.1177/0361198105193300108
  • Chhabra, J. P., Hasik, V., Bilec, M. M., & Warn, G. P. (2018). Probabilistic assessment of the life-cycle environmental performance and functional life of buildings due to seismic events. Journal of Architectural Engineering, 24(1), 4017035. doi:10.1061/(ASCE)AE.1943-5568.0000284
  • Cimellaro, G. P., & Piqué, M. (2016). Resilience of a hospital emergency department under seismic event. Advances in Structural Engineering, 19(5), 825–836. doi:10.1177/1369433216630441
  • Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010a). Framework for analytical quantification of disaster resilience. Engineering Structures, 32(11), 3639–3649.
  • Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010b). Seismic resilience of a hospital system. Structure & Infrastructure Engineering, 6(1–2), 127–144.
  • Decò, A., Bocchini, P., & Frangopol, D. M. (2013). A probabilistic approach for the prediction of seismic resilience of bridges. Earthquake Engineering & Structural Dynamics, 42(10), 1469–1487.
  • Dong, Y., & Frangopol, D. M. (2015). Risk and resilience assessment of bridges under mainshock and aftershocks incorporating uncertainties. Engineering Structures, 83, 198–208. doi:10.1016/j.engstruct.2014.10.050
  • Dong, Y., & Frangopol, D. M. (2016a). Performance-based seismic assessment of conventional and base-isolated steel buildings including environmental impact and resilience. Earthquake Engineering & Structural Dynamics, 45(5), 739–756.
  • Dong, Y., & Frangopol, D. M. (2016b). Probabilistic time-dependent multihazard life-cycle assessment and resilience of bridges considering climate change. Journal of Performance of Constructed Facilities, 30(5), 4016034.
  • Dong, Y., & Frangopol, D. M. (2017). Probabilistic assessment of an interdependent healthcare–bridge network system under seismic hazard. Structure and Infrastructure Engineering, 13(1), 160–170. doi:10.1080/15732479.2016.1198399
  • Dong, Y., Frangopol, D. M., & Sabatino, S. (2016). A decision support system for mission-based ship routing considering multiple performance criteria. Reliability Engineering & System Safety, 150, 190–201. doi:10.1016/j.ress.2016.02.002
  • Dong, Y., Frangopol, D. M., & Saydam, D. (2014). Pre-earthquake multi-objective probabilistic retrofit optimization of bridge networks based on sustainability. Journal of Bridge Engineering, 19(6), 4014018. doi:10.1061/(ASCE)BE.1943-5592.0000586
  • Eads, L., Miranda, E., Krawinkler, H., & Lignos, D. G. (2013). An efficient method for estimating the collapse risk of structures in seismic regions. Earthquake Engineering & Structural Dynamics, 42(1), 25–41. doi:10.1002/eqe.2191
  • Faber, M. H., & Stewart, M. G. (2003). Risk assessment for civil engineering facilities: critical overview and discussion. Reliability Engineering & System Safety, 80(2), 173–184.
  • Feese, C., Li, Y., & Bulleit, W. M. (2015). Assessment of seismic damage of buildings and related environmental impacts. Journal of Performance of Constructed Facilities, 29(4), 4014106. doi:10.1061/(ASCE)CF.1943-5509.0000584
  • FEMA-547. (2006). Techniques for the seismic rehabilitation of existing buildings. Building Seismic Safety Council for the Federal Emergency Management Agency. Washington DC, USA
  • FEMA. (2012). Seismic performance assessment of buildings: Vol. 1–Methodology. FEMA. Redwood City, California, USA
  • Frangopol, D. M., Lin, K.-Y., & Estes, A. C. (1997). Life-cycle cost design of deteriorating structures. Journal of Structural Engineering, 123(10), 1390–1401. doi:10.1061/(ASCE)0733-9445(1997)123:10(1390)
  • Frangopol, D. M., & Soliman, M. (2016). Life-cycle of structural systems: Recent achievements and future directions. Structure and Infrastructure Engineering, 12(1), 1–20. doi:10.1080/15732479.2014.999794
  • Gencturk, B., Hossain, K., & Lahourpour, S. (2016). Life cycle sustainability assessment of RC buildings in seismic regions. Engineering Structures, 110, 347–362. doi:10.1016/j.engstruct.2015.11.037
  • Giouvanidis, A. I., & Dong, Y. (2020). Seismic loss and resilience assessment of single-column rocking bridges. Bulletin of Earthquake Engineering, 18(9), 4481–4513. doi:10.1007/s10518-020-00865-5
  • Han, R., Li, Y., & van de Lindt, J. (2017). Probabilistic assessment and cost-benefit analysis of nonductile reinforced concrete buildings retrofitted with base isolation: Considering mainshock–aftershock hazards. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 3(4), 4017023. doi:10.1061/AJRUA6.0000928
  • Hashemi, M. J., Al-Attraqchi, A. Y., Kalfat, R., & Al-Mahaidi, R. (2019). Linking seismic resilience into sustainability assessment of limited-ductility RC buildings. Engineering Structures, 188, 121–136. doi:10.1016/j.engstruct.2019.03.021
  • Hwang, C.-L., & Yoon, K. (1981). Methods for multiple attribute decision making (Multiple attribute decision making) (pp. 58–191). Springer.
  • IBC. (2012). International building code. International Code Council. Washington DC, USA
  • Kameshwar, S., Cox, D. T., Barbosa, A. R., Farokhnia, K., Park, H., Alam, M. S., & van de Lindt, J. W. (2019). Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network. Reliability Engineering & System Safety, 191, 106568. doi:10.1016/j.ress.2019.106568
  • Keeble, B. R. (1988). The Brundtland report: ‘Our common future’. MedicineWar, 4(1), 17–25.
  • Kilanitis, I., & Sextos, A. (2019). Integrated seismic risk and resilience assessment of roadway networks in earthquake prone areas. Bulletin of Earthquake Engineering, 17(1), 181–210. doi:10.1007/s10518-018-0457-y
  • Koliou, M., van de Lindt, J. W., McAllister, T. P., Ellingwood, B. R., Dillard, M., & Cutler, H. (2020). State of the research in community resilience: Progress and challenges. Sustainable and Resilient Infrastructure, 5(3), 131–151. doi:10.1080/23789689.2017.1418547
  • Krawinkler, H., Zareian, F., Medina, R. A., & Ibarra, L. F. (2006). Decision support for conceptual performance‐based design. Earthquake Engineering & Structural Dynamics, 35(1), 115–133. doi:10.1002/eqe.536
  • Li, Y., Dong, Y., Frangopol, D. M., & Gautam, D. (2020). Long-term resilience and loss assessment of highway bridges under multiple natural hazards. Structure and Infrastructure Engineering, 16(4), 626–641. doi:10.1080/15732479.2019.1699936
  • Li, Y., Dong, Y., & Qian, J. (2020). Higher-order analysis of probabilistic long-term loss under nonstationary hazards. Reliability Engineering & System Safety, 203, 107092.
  • Ligabue, V., Pampanin, S., & Savoia, M. (2018). Seismic performance of alternative risk-reduction retrofit strategies to support decision making. Bulletin of Earthquake Engineering, 16(7), 3001–3030. doi:10.1007/s10518-017-0291-7
  • Liu, K., Zhai, C., & Dong, Y. (2020). Optimal restoration schedules of transportation network considering resilience. Structure and Infrastructure Engineering, 1–14.doi:10.1080/15732479.2020.1801764
  • Lounis, Z., & McAllister, T. P. (2016). Risk-based decision making for sustainable and resilient infrastructure systems. Journal of Structural Engineering, 142(9), F4016005. doi:10.1061/(ASCE)ST.1943-541X.0001545
  • Mateo, J. R. S. C. (2012). Multi-criteria analysis (Multi criteria analysis in the renewable energy industry) (pp. 7–10). Springer.
  • McAllister, T. P., & Moddemeyer, S. (2018). Aligning community resilience and sustainability (Routledge Handbook of Sustainable and Resilient Infrastructure (pp. 15–27). Routledge.
  • Mitrani-Reiser, J. (2007). An ounce of prevention: probabilistic loss estimation for performance-based earthquake engineering (Doctoral dissertation). California Institute of Technology, CA.
  • Padgett, J. E., & Li, Y. (2016). Risk-based assessment of sustainability and hazard resistance of structural design. Journal of Performance of Constructed Facilities, 30(2), 4014208. doi:10.1061/(ASCE)CF.1943-5509.0000723
  • Qian, J., & Dong, Y. (2020). Multi-criteria decision making for seismic intensity measure selection considering uncertainty. Earthquake Engineering & Structural Dynamics, 49(11), 1095–1114. doi:10.1002/eqe.3280
  • Rackwitz, R. (2002). Optimization and risk acceptability based on the life quality index. Structural Safety, 24(2–4), 297–331.
  • Ramirez, C., Liel, A., Mitrani‐Reiser, J., Haselton, C., Spear, A., Steiner, J., … Miranda, E. (2012). Expected earthquake damage and repair costs in reinforced concrete frame buildings. Earthquake Engineering & Structural Dynamics, 41(11), 1455–1475.
  • Tesfamariam, S., & Goda, K. (2015). Loss estimation for non‐ductile reinforced concrete building in Victoria, British Columbia, Canada: effects of mega‐thrust Mw9‐class subduction earthquakes and aftershocks. Earthquake Engineering & Structural Dynamics, 44(13), 2303–2320. doi:10.1002/eqe.2585
  • Tsaur, R.-C. (2011). Decision risk analysis for an interval TOPSIS method. Applied Mathematics and Computation, 218(8), 4295–4304.
  • Wang, H.-F., & Hsu, F.-C. (2009). An integrated operation module for individual risk management. European Journal of Operational Research, 198(2), 610–617. doi:10.1016/j.ejor.2008.09.039
  • Wang, Z., Jin, W., Dong, Y., & Frangopol, D. M. (2018). Hierarchical life-cycle design of reinforced concrete structures incorporating durability, economic efficiency and green objectives. Engineering Structures, 157, 119–131. doi:10.1016/j.engstruct.2017.11.022
  • Yang, D. Y., & Frangopol, D. M. (2018). Bridging the gap between sustainability and resilience of civil infrastructure using lifetime resilience. In Routledge handbook of sustainable and resilient infrastructure (pp. 419–442). Routledge.
  • Yeo, G. L., & Cornell, C. A. (2009). Building life-cycle cost analysis due to mainshock and aftershock occurrences. Structural Safety, 31(5), 396–408.
  • Zavadskas, E. K., Kaklauskas, A., Peldschus, F., & Turskis, Z. (2007). Multi-attribute assessment of road design solutions by using the COPRAS method. Baltic Journal of Road Bridge Engineering, 2(4), 195–203.
  • Zheng, Y., & Dong, Y. (2019). Performance-based assessment of bridges with steel-SMA reinforced piers in a life-cycle context by numerical approach. Bulletin of Earthquake Engineering, 17(3), 1667–1688. doi:10.1007/s10518-018-0510-x
  • Zinke, T., Bocchini, P., Frangopol, D., & Ummenhofer, T. (2012). Combining resilience and sustainability in infrastructure projects. Life-cycle and sustainability of civil infrastructure systems. Proceedings of the Third International Symposium on Life-Cycle Civil Engineering, Vienna, Austria, 3–6 October 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.