808
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Implication of building inventory accuracy on physical and socio-economic resilience metrics for informed decision-making in natural hazards

ORCID Icon, , ORCID Icon, &
Pages 534-554 | Received 21 Mar 2020, Accepted 19 Oct 2020, Published online: 23 Nov 2020

References

  • Abrams, D. P., & Shinozuka, M. (Eds.). (1997). Loss assessment of Memphis buildings. (MCEER: Earthquake Engineering to Extreme Events; No. NCEER-97-0018). National Center for Earthquake Engineering Research.
  • Aghababaei, M., & Mahsuli, M. (2018). Detailed seismic risk analysis of buildings using structural reliability methods. Probabilistic Engineering Mechanics, 53, 23–38. doi:10.1016/j.probengmech.2018.04.001
  • Aghababaei, M., & Mahsuli, M. (2019). Component damage models for detailed seismic risk analysis using structural reliability methods. Structural Safety, 76, 108–122. doi:10.1016/j.strusafe.2018.08.004
  • Almufti, I., & Willford, M. (2013). REDiTM rating system: Resilience-based earthquake design initiative for the next generation of buildings. Arup Co.
  • Asadi, E., Shen, Z., Zhou, H., Salman, A., & Li, Y. (2020). Risk-informed multi-criteria decision framework for resilience, sustainability and energy analysis of reinforced concrete buildings. Journal of Building Performance Simulation, 13(6), 804–823. doi:10.1080/19401493.2020.1824016
  • ATC. (1985). Earthquake damage evaluation data for California. Applied Technology Council, Redwood City, CA.
  • Atkinson, G. M., &Boore, D. M. (1995). Ground-motion relations for eastern North America. Bulletin of the Seismological Society of America, 85(1), 17.
  • Attary, N., Cutler, H., Shields, M., & van de Lindt, J. W. (2020). The economic effects of financial relief delays following a natural disaster. Economic Systems Research, 32(3), 351–377. doi:10.1080/09535314.2020.1713729
  • Bai, J.-W., Hueste, M. B. D., & Gardoni, P. (2009). Probabilistic assessment of structural damage due to earthquakes for buildings in Mid-America. Journal of Structural Engineering, 135(10), 1155–1163. doi:10.1061/(ASCE)0733-9445(2009)135:10(1155)
  • Bai, J., Hueste, M., & Gardoni, P. (2011, December). Scenario-based seismic loss estimation for concrete buildings in the central US. In 11th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP (pp. 41–47.
  • Baker, J. W. (2018, June). Issues with applying performance-based engineering to distributed infrastructure systems. In Eleventh US National Conference on Earthquake Engineering: Integrating Science, Engineering & Policy, Los Angeles, CA, United States.
  • Bocchini, P., Decò, A., & Frangopol, D. M. (2012). Probabilistic functionality recovery model for resilience analysis. In F. Biodini & D. M. Frangopol (Eds.), Bridge maintenance, safety, management, resilience and sustainability (pp. 1920–1927). UK: CRC Press, Taylor and Francis.
  • Bommer, J., Spence, R., Erdik, M., Tabuchi, S., Aydinoglu, N., Booth, E., … Peterken, O. (2002). Development of an earthquake loss model for Turkish catastrophe insurance. Journal of Seismology, 6(3), 431–446. doi:10.1023/A:1020095711419
  • Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O'Rourke, T. D., Reinhorn, A. M., … von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752. doi:10.1193/1.1623497
  • Burton, H. V., Deierlein, G., Lallemant, D., & Lin, T. (2016). Framework for incorporating probabilistic building performance in the assessment of community seismic resilience. Journal of Structural Engineering, 142(8), C4015007. doi:10.1061/(ASCE)ST.1943-541X.0001321
  • Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010). Framework for analytical quantification of disaster resilience. Engineering Structures, 32(11), 3639–3649. doi:10.1016/j.engstruct.2010.08.008
  • Cimellaro, G. P., Renschler, C., Reinhorn, A. M., & Arendt, L. (2016). PEOPLES: a framework for evaluating resilience. Journal of Structural Engineering, 142(10), 04016063. doi:10.1061/(ASCE)ST.1943-541X.0001514
  • Coburn, A. W., Spence, R. J., & Pomonis, A. (1992, July). Factors determining human casualty levels in earthquakes: mortality prediction in building collapse. In Proceedings of the tenth world conference on earthquake engineering (Vol. 10, pp. 5989–5994). Balkema Rotterdam.
  • Cutler, H., Shields, M., Tavani, D., & Zahran, S. (2016). Integrating engineering outputs from natural disaster models into a dynamic spatial computable general equilibrium model of Centerville. Sustainable and Resilient Infrastructure, 1(3-4), 169–187. doi:10.1080/23789689.2016.1254996
  • Decò, A., Bocchini, P., & Frangopol, D. M. (2013). A probabilistic approach for the prediction of seismic resilience of bridges. Earthquake Engineering & Structural Dynamics, 42(10), 1469–1487.
  • Dong, Y., & Frangopol, D. M. (2016). Probabilistic time-dependent multi-hazard life-cycle assessment and resilience of bridges considering climate change. Journal of Performance of Constructed Facilities, 30(5), 04016034. doi:10.1061/(ASCE)CF.1943-5509.0000883
  • Dueñas-Osorio, L., Craig, J. I., & Goodno, B. J. (2007). Seismic response of critical interdependent networks. Earthquake Engineering & Structural Dynamics, 36(2), 285–306.
  • Ellingwood, B. R., Cutler, H., Gardoni, P., Peacock, W. G., van de Lindt, J. W., & Wang, N. (2016). The Centerville virtual community: A fully integrated decision model of interacting physical and social infrastructure systems. Sustainable and Resilient Infrastructure, 1(3-4), 95–107. doi:10.1080/23789689.2016.1255000
  • Elnashai, A. S., & Hajjar, J. F. (2006, April). Mid-America Earthquake (MAE) Center program in seismic risk management. In Proceedings of the 8th US National Conference on Earthquake Engineering, San Francisco, California.
  • Elnashai, A. S., Cleveland, L. J., Jefferson, T., & Harrald, J. (2008). Impact of earthquakes on the central USA. Mid-American Earthquake Center, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  • Eusgeld, I., Henzi, D., & Kröger, W. (2008). Comparative evaluation of modeling and simulation techniques for interdependent critical infrastructures. Scientific Report, Laboratory for Safety Analysis, ETH Zurich, 6–8.
  • Federal Emergency Management Agency (FEMA). (2012). Seismic Performance Assessment of Buildings Volume 1-Methodology. Rep. No. FEMA P-58-1.
  • French, S. P., & Muthukumar, S. (2006). Advanced technologies for earthquake risk inventories. Journal of Earthquake Engineering, 10(2), 207–236. doi:10.1080/13632460609350594
  • Griot, C. (2010). Modelling and simulation for critical infrastructure interdependency assessment: a meta-review for model characterisation. International Journal of Critical Infrastructures, 6(4), 363–379.
  • Guidotti, R., Chmielewski, H., Unnikrishnan, V., Gardoni, P., McAllister, T., & van de Lindt, J. (2016). Modeling the resilience of critical infrastructure: The role of network dependencies. Sustainable and Resilient Infrastructure, 1(3-4), 153–168. doi:10.1080/23789689.2016.1254999
  • Hemmati, M., Ellingwood, B. R., & Mahmoud, H. N. (2020). The role of urban growth in resilience of communities under flood risk. Earth's Future, 8(3), e2019EF001382.
  • Hernandez, E., Roohi, M., & Rosowsky, D. (2018). Estimation of element‐by‐element demand‐to‐capacity ratios in instrumented SMRF buildings using measured seismic response. Earthquake Engineering & Structural Dynamics, 47(12), 2561–2578.
  • IN-CORE. (2020). Interdependent Networked Community Resilience Modeling Environment. Retrieved November 09, 2020, from https://incore.ncsa.illinois.edu/
  • Jaiswal, K., & Wald, D. J. (2008). Creating a global building inventory for earthquake loss assessment and risk management (p. 103). US Geological Survey open-file report-1160. Reston, VA: US Geological Survey.
  • Kajitani, Y., & Tatano, H. (2018). Applicability of a spatial computable general equilibrium model to assess the short-term economic impact of natural disasters. Economic Systems Research, 30(3), 289–312. doi:10.1080/09535314.2017.1369010
  • Kameshwar, S., Cox, D. T., Barbosa, A. R., Farokhnia, K., Park, H., Alam, M. S., & van de Lindt, J. W. (2019). Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network. Reliability Engineering & System Safety, 191, 106568.
  • Kennedy, R. P., & Ravindra, M. K. (1984). Seismic fragilities for nuclear power plant risk studies. Nuclear Engineering and Design, 79(1), 47–68. doi:10.1016/0029-5493(84)90188-2
  • Koliou, M., van de Lindt, J. W., McAllister, T. P., Ellingwood, B. R., Dillard, M., & Cutler, H. (2020). State of the research in community resilience: Progress and challenges. Sustainable and Resilient Infrastructure, 5(3), 131–151. doi:10.1080/23789689.2017.1418547
  • Lin, Y. S., Peacock, W. G., Lu, J. C., Zhang, Y., & Center, R. & (2008). Household dislocation algorithm 3: A logistic regression approach. Hazard Reduction and Recovery Center, Texas A&M University. HRRC Reports, 08–05.
  • Lofgren, H., Harris, R. L., & Robinson, S. (2002). A standard computable general equilibrium (CGE) Model in GAMS, 5. Intl Food Policy Res Inst.
  • Masoomi, H., & van de Lindt, J. W. (2018). Restoration and functionality assessment of a community subjected to tornado hazard. Structure and Infrastructure Engineering, 14(3), 275–291. doi:10.1080/15732479.2017.1354030
  • Massey, D. S. (2001). Residential segregation and neighborhood conditions in US metropolitan areas. America Becoming: Racial Trends and Their Consequences, 1(1), 391–434.
  • McAllister, T.,Clavin, C., Ellingwood, B., van de Lindt, J., Mizzen, D., & Lavelle, F. (2019). Data, information, and tools needed for community resilience planning and decision-making. US Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD.doi:10.6028/NIST.SP.1240
  • Miles, S. B., & Chang, S. E. (2006). Modeling community recovery from earthquakes. Earthquake Spectra, 22(2), 439–458. doi:10.1193/1.2192847
  • Miles, S. B., & Chang, S. E. (2011). ResilUS: A community based disaster resilience model. Cartography and Geographic Information Science, 38(1), 36–51. doi:10.1559/1523040638136
  • Mostafizi, A., Wang, H., Cox, D., Cramer, L. A., & Dong, S. (2017). Agent-based tsunami evacuation modeling of unplanned network disruptions for evidence-driven resource allocation and retrofitting strategies. Natural Hazards, 88(3), 1347–1372. doi:10.1007/s11069-017-2927-y
  • Nofal, O. M., & van de Lindt, J. W. (2020). Understanding flood risk in the context of community resilience modeling for the built environment: research needs and trends. Sustainable and Resilient Infrastructure, 5(1), 1–17.doi:10.1080/23789689.2020.1722546.
  • Nozhati, S., Sarkale, Y., Chong, E. K., & Ellingwood, B. R. (2020). Optimal stochastic dynamic scheduling for managing community recovery from natural hazards. Reliability Engineering & System Safety, 193, 106627.
  • Lenjani, A., Bilionis, I., Dyke, S. J., Yeum, C. M., & Monteiro, R. (2020). A resilience-based method for prioritizing post-event building inspections. Natural Hazards, 100(2), 877–896. doi:10.1007/s11069-019-03849-0
  • Lin, Y. S., Peacock, W. G., Lu, J. C., & Zhang, Y. (2008). Household dislocation algorithm 3: A logistic regression approach 08-05R. Retrieved from https://hrrc.arch.tamu.edu/publications/research%20reports/08-05R%20Dislocation%20Algorithm%2034.pdf
  • Loggins, R., Little, R. G., Mitchell, J., Sharkey, T., & Wallace, W. A. (2019). CRISIS: Modeling the restoration of interdependent civil and social infrastructure systems following an extreme event. Natural Hazards Review, 20(3), 04019004.
  • Ouyang, M., & Duenas-Osorio, L. (2012). Time-dependent resilience assessment and improvement of urban infrastructure systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(3), 033122. doi:10.1063/1.4737204
  • Ouyang, M., Dueñas-Osorio, L., & Min, X. (2012). A three-stage resilience analysis framework for urban infrastructure systems. Structural Safety, 36, 23–31.
  • Ouyang, M., & Duenas-Osorio, L. (2014). Multi-dimensional hurricane resilience assessment of electric power systems. Structural Safety, 48, 15–24. doi:10.1016/j.strusafe.2014.01.001
  • Ouyang, M. (2014). Review on modeling and simulation of interdependent critical infrastructure systems. Reliability Engineering & System Safety, 121, 43–60.
  • Partridge, M. D., & Rickman, D. S. (2010). Computable general equilibrium (CGE) modelling for regional economic development analysis. Regional Studies, 44(10), 1311–1328. doi:10.1080/00343400701654236
  • Peacock, W. G., & Girard, C. (1997). Ethnic and racial inequalities in hurricane damage and insurance settlements. In W.G. Peacock, B.H. Morrow and H. Gladwin (eds.) Hurricane Andrew: Ethnicity, Gender, and the Sociology of Disasters. Routledge, New York.
  • Peacock, W. G., Van Zandt, S., Zhang, Y., & Highfield, W. E. (2014). Inequities in long-term housing recovery after disasters. Journal of the American Planning Association, 80(4), 356–371. doi:10.1080/01944363.2014.980440
  • Pederson, P.,Dudenhoeffer, D.,Hartley, S., &Permann, M. (2006). Critical infrastructure interdependency modeling: a survey of US and international research. Idaho National Laboratory, 25, 27.
  • Pendall, R., Theodos, B., & Franks, K. (2012). Vulnerable people, precarious housing, and regional resilience: an exploratory analysis. Housing Policy Debate, 22(2), 271–296. doi:10.1080/10511482.2011.648208
  • Renschler, C. S., Frazier, A. E., Arendt, L. A., Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010, July). Developing the ‘PEOPLES’ resilience framework for defining and measuring disaster resilience at the community scale. In Proceedings of the 9th US National and 10th Canadian Conference on Earthquake Engineering (pp. 25–29).
  • Roohi, M., & Hernandez, E.M. (2020). Performance-based post-earthquake decision making for instrumented buildings. Journal of Civil Structural Health Monitoring, 10(5), 775–792.
  • Roohi, M., Erazo, K., Rosowsky, D., & Hernandez, E. M. (2021). An extended model-based observer for state estimation in nonlinear hysteretic structural systems. Mechanical Systems and Signal Processing, 146, 107015. doi:10.1016/j.ymssp.2020.107015
  • Roohi, M., Hernandez, E. M., & Rosowsky, D. (2020). Reconstructing element-by-element dissipated hysteretic energy in instrumented buildings: Application to the Van Nuys hotel testbed. Journal of Engineering Mechanics, 147(1), 04020141.
  • Roohi, M. (2020). Performance-based seismic monitoring of instrumented buildings (Ph.D. Dissertation). Department of Civil and Environmental Engineering, University of Vermont, Vermont. https://scholarworks.uvm.edu/graddis/1140.
  • Roohi, M., Hernandez, E. M., & Rosowsky, D. (2019). Nonlinear seismic response reconstruction and performance assessment of instrumented wood‐frame buildings—Validation using NEESWood Capstone full‐scale tests. Structural Control and Health Monitoring, 26(9), e2373. doi:10.1002/stc.2373
  • Rose, A., & Liao, S. Y. (2005). Modeling regional economic resilience to disasters: A computable general equilibrium analysis of water service disruptions. Journal of Regional Science, 45(1), 75–112. doi:10.1111/j.0022-4146.2005.00365.x
  • Rosenheim, N., Guidotti, R., Gardoni, P., & Peacock, W. G. (2019). Integration of detailed household and housing unit characteristic data with critical infrastructure for post-hazard resilience modeling. Sustainable and Resilient Infrastructure, 1–17.
  • Satumtira, G., & Dueñas-Osorio, L. (2010). Synthesis of modeling and simulation methods on critical infrastructure interdependencies research. In Sustainable and resilient critical infrastructure systems (pp. 1–51). Berlin, Heidelberg: Springer.
  • Schwarm, W., &Cutler, H. (2003). Building Small City and Town SAMS and CGE Models. Review of Urban & Regional Development Studies, 15(2), 132–147. doi:10.1111/1467-940X.00069
  • Sharma, N., Tabandeh, A., & Gardoni, P. (2020). Regional resilience analysis: A multi-scale approach to model the recovery of interdependent infrastructure. Computer‐Aided Civil and Infrastructure Engineering, 1–16. doi:10.1111/mice.12606
  • Steelman, J., Song, J., & Hajjar, J. F. (2007). Integrated data flow and risk aggregation for consequence-based risk management of seismic regional losses. Mid-America Earthquake Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, November, 175. pp.
  • Steelman, J., & Hajjar, J. F. (2008a). Capstone scenario applications of consequence-based risk management for the Memphis Testbed. Mid-American Earthquake Center, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  • Steelman, J., & Hajjar, J. F. (2008b). Systemic validation of consequence-based risk management for seismic regional losses. Mid-American Earthquake Center, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  • Sun, W.,Bocchini, P., &Davison, B. D. (2020). Model for Estimating the Impact of Interdependencies on System Recovery. Journal of Infrastructure Systems, 26(3), 04020031 doi:10.1061/(ASCE)IS.1943-555X.0000569
  • Talebiyan, H., & Duenas-Osorio, L. (2020). Decentralized decision making for the restoration of interdependent networks. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 6(2), 04020012.
  • US Census Bureau. (2010). Tables H3 (Occupancy Status) & H11 (Total Population in Occupied Housing Units by Tenure), 2010: DEC Summary, File 1. https://data.census.gov/cedsci/table?q=h11&g=0500000US47157&tid=DECENNIALSF12010.H11.
  • Van Zandt, S. (2007). Racial/ethnic differences in housing outcomes for first‐time, low‐income home buyers: Findings from a National homeownership education program. Housing Policy Debate, 18(2), 431–474.
  • Wang, W., van de Lindt, J. W., Rosenheim, N., Cutler, H., Lee, J. S., & Koliou, M. (2020). Community resilience assessment of an EF-5 Tornado using the IN-CORE modeling environment. 7th International Symposium on Life-Cycle Civil Engineering (IALCCE 2020).
  • Xiong, C., Huang, J., & Lu, X. (2020). Framework for city‐scale building seismic resilience simulation and repair scheduling with labor constraints driven by time–history analysis. Computer-Aided Civil and Infrastructure Engineering, 35(4), 322–341. doi:10.1111/mice.12496
  • Zhang, W., Lin, P., Wang, N., Nicholson, C., & Xue, X. (2018). Probabilistic prediction of post-disaster functionality loss of community building portfolios considering utility disruptions. Journal of Structural Engineering, 144(4), 04018015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.