Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 19, 2023 - Issue 4
505
Views
4
CrossRef citations to date
0
Altmetric
Article

Probabilistic seismic assessment of reinforced concrete bridges using simulated records

ORCID Icon, ORCID Icon & ORCID Icon
Pages 554-574 | Received 09 Feb 2021, Accepted 18 May 2021, Published online: 22 Jul 2021

References

  • A.N.A.S S.p.A. (2020). LISTINO PREZZI 2020, NC-MS.2020 – Rev.1, Nouve Costruzioni – Manutenzione Straordinaria. Direzione Ingegneria e Verifiche (in Italian). Retrieved from https://www.stradeanas.it/it/elenco-prezzi.
  • Akkar, S., Sandıkkaya, M. A., & Ay, B. (2014). Compatible ground-motion prediction equations for damping scaling factors and vertical-to-horizontal spectral amplitude ratios for the broader Europe region. Bulletin of Earthquake Engineering, 12, 517–547. doi:10.1007/s10518-013-9537-1
  • Akkar, S., Sandıkkaya, M. A., & Bommer, J. J. (2014). Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bulletin of Earthquake Engineering, 12, 359–387. doi:10.1007/s10518-013-9461-4
  • Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S. J., … Donahue, J. L. (2014). NGA-West2 database. Earthquake Spectra, 30(3), 989–1005. doi:10.1193/070913EQS197M
  • Atkinson, G. M., Goda, K., & Assatourians, K. (2011). Comparison of nonlinear structural responses for accelerograms simulated from the stochastic finite-fault approach versus hybrid broadband approach. Bulletin of the Seismological Society of America, 101(6), 2967–2980. doi:10.1785/0120100308
  • Baker, J. W. (2015). Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra, 31(1), 579–599. doi:10.1193/021113EQS025M
  • Bernier, C., Padgett, J. E., Proulx, J., & Paultre, P. (2016). Seismic fragility of concrete gravity dams with spatial variation of angle of friction: case study. Journal of Structural Engineering, 142(5), 05015002. doi:10.1061/(ASCE)ST.1943-541X.0001441
  • Bisadi, V., & Padgett, J. E. (2015). Explicit time-dependent multi-hazard cost analysis based on parameterized demand models for the optimum design of bridge structures. Computer-Aided Civil and Infrastructure Engineering, 30(7), 541–554. doi:10.1111/mice.12131
  • Boore, D. M. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America, 73(6A), 1865–1894. doi:10.1785/BSSA07306A1865
  • Boore, D. M., & Joyner, W. B. (1997). Site amplifications for generic rock sites. Bulletin of the Seismological Society of America, 87(2): 327–341.
  • Calvi, G. M., Pinho, R., Magenes, G., Bommer, J. J., Restrepo-Vélez, L. F., & Crowley, H. (2006). Development of seismic vulnerability assessment methodologies over the past 30 years. ISET Journal of Earthquake Technology, 43(3), 75–104.
  • Cornell, C. A., & Krawinkler, H. (2000). Progress and challenges in seismic performance assessment. PEER Center News.
  • Cosenza, E., Del Vecchio, C., Di Ludovico, M., Dolce, M., Moroni, C., Prota, A., & Renzi, E. (2018). The Italian guidelines for seismic risk classification of constructions: technical principles and validation. Bulletin of Earthquake Engineering, 16(12), 5905–5935. doi:10.1007/s10518-018-0431-8
  • Danciu, L., Şeşetyan, K., Demircioglu, M., Gülen, L., Zare, M., Basili, R., … Giardini, D. (2018). The 2014 earthquake model of the Middle East: Seismogenic sources. Bulletin of Earthquake Engineering, 16(8), 3465–3496. doi:10.1007/s10518-017-0096-8
  • Federal Emergency Management Agency FEMA P-58. (2012). Seismic performance assessment of buildings. Washington, DC: Federal Emergency Management Agency.
  • Federal Emergency Management Agency, FEMA 273. (1997). NEHRP guidelines for the seismic rehabilitation of buildings. Washington, DC: Federal Emergency Management Agency.
  • Galanis, P. H., & Moehle, J. P. (2015). Development of collapse indicators for risk assessment of older-type reinforced concrete buildings. Earthquake Spectra, 31(4), 1991–2006. doi:10.1193/080613EQS225M
  • Galasso, C., Kaviani, P., Tsioulou, A., & Zareian, F. (2020). Validation of ground motion simulations for historical events using skewed bridges. Journal of Earthquake Engineering, 24(10), 1652–1674. doi:10.1080/13632469.2018.1483277
  • Gentile, R., & Galasso, C. (2020). Gaussian process regression for seismic fragility assessment of building portfolios. Structural Safety, 87, 101980. doi:10.1016/j.strusafe.2020.101980
  • Günay, S., & Mosalam, K. M. (2013). PEER performance-based earthquake engineering methodology, revisited. Journal of Earthquake Engineering, 17(6), 829–858. doi:10.1080/13632469.2013.787377
  • Haselton, C. B., Baker, J. W., Stewart, J. P., Whittaker, A. S., Luco, N., Fry, A., … Pekelnicky, R. G. (2017). Response history analysis for the design of new buildings in the NEHRP provisions and ASCE/SEI 7 standard: Part I - Overview and specification of ground motions. Earthquake Spectra, 33(2), 373–395. doi:10.1193/032114EQS039M
  • HAZUS-MH-MR1. (2003). Multi-hazard loss estimation methodology earthquake model. In Advances Engineering Building Module.
  • Jalayer, F., & Cornell, C. A. (2009). Alternative non-linear demand estimation methods for probability-based seismic assessments. Earthquake Engineering and Structural Dynamics, 38(8), 951–972. doi:10.1002/eqe.876
  • Jalayer, F., De Risi, R., & Manfredi, G. (2015). Bayesian cloud analysis: efficient structural fragility assessment using linear regression. Bulletin of Earthquake Engineering, 13(4), 1183–1203. doi:10.1007/s10518-014-9692-z
  • Jalayer, F., Ebrahimian, H., Miano, A., Manfredi, G., & Sezen, H. (2017). Analytical fragility assessment using unscaled ground motion records. Earthquake Engineering and Structural Dynamics, 46(15), 2639–2663. doi:10.1002/eqe.2922
  • Jayaram, N., Lin, T., & Baker, J. W. (2011). A Computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance. Earthquake Spectra, 27(3), 797–815. doi:10.1193/1.3608002
  • Kameshwar, S., & Padgett, J. E. (2017). Characterizing and predicting seismic repair costs for bridges. Journal of Bridge Engineering, 22(11), 04017083. doi:10.1061/(ASCE)BE.1943-5592.0001129
  • Karimzadeh, S., Askan, A., & Yakut, A. (2018). Assessment of simulated ground motions in earthquake engineering practice: a case study for Duzce (Turkey). In Best practices in physics-based fault rupture models for seismic hazard assessment of nuclear installations, edited by Dalguer L.A., Fukushima Y., Irikura K., and Wu C., Springer, Switzerland, pp. 265–283. doi:10.1007/978-3-319-72709-7_16
  • Karimzadeh, S., Ozsarac, V., Askan, A., & Erberik, M. A. (2019). Use of simulated ground motions for the evaluation of energy response of simple structural systems. Soil Dynamics and Earthquake Engineering, 123, 525–542. doi:10.1016/j.soildyn.2019.05.024
  • Kircher, C. A., Whitman, R. V., & Holmes, W. T. (2006). HAZUS earthquake loss estimation methods. Natural Hazards Review, 7(2), 45–59. doi:10.1061/(ASCE)1527-6988(2006)7:2(45)
  • Kohrangi, M., Bazzurro, P., Vamvatsikos, D., & Spillatura, A. (2017). Conditional spectrum-based ground motion record selection using average spectral acceleration. Earthquake Engineering and Structural Dynamics, 46(10), 1667–1685. doi:10.1002/eqe.2876
  • Mackie, K. R., Wong, J. M., & Stojadinovic, B. (2011). Bridge damage and loss scenarios calibrated by schematic design and cost estimation of repairs. Earthquake Spectra, 27(4), 1127–1145. doi:10.1193/1.3651362
  • Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical stress‐strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804–1826. doi:10.1061/(asce)0733-9445(1988)114:8(1804)
  • Massey, F. J. (1951). The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 46(253), 68–78. doi:10.1080/01621459.1951.10500769
  • Menegotto, M., & Pinto, P. E. (1973). Method of analysis for cyclically loaded R. C. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. In Proceedings of IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Loads (pp. 15–22).
  • Mohammadioun, B., & Serva, L. (2001). Stress drop, slip type, earthquake magnitude, and seismic hazard. Bulletin of the Seismological Society of America, 91(4), 694–707. doi:10.1785/0120000067
  • Motazedian, D., & Atkinson, G. M. (2005). Stochastic finite-fault modeling based on a dynamic corner frequency. Bulletin of the Seismological Society of America, 95(3), 995–1010. doi:10.1785/0120030207
  • Nielson, B. G., & DesRoches, R. (2007). Seismic fragility methodology for highway bridges using a component level approach. Earthquake Engineering and Structural Dynamics, 36(6), 823–839. doi:10.1002/eqe.655
  • O’Reilly, G., & Monteiro, R. (2019). On the efficient risk assessment of bridge structures. In Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2019) (pp. 473–483). doi:10.7712/120119.6933.18933
  • Olsen, K. B., & Mayhew, J. E. (2010). Goodness-of-fit criteria for broadband synthetic seismograms, with application to the 2008 Mw 5.4 Chino Hills, California, Earthquake. Seismological Research Letters, 81(5), 715–723. doi:10.1785/gssrl.81.5.715
  • Ozsarac, V., Karimzadeh, S., Askan, A., & Erberik, M. A. (2021). Seismic demands of bare and base-isolated steel frames for real against simulated records of a past earthquake. Structure and Infrastructure Engineering. doi:10.1080/15732479.2021.1895227
  • Ozsarac, V. (2020). EzGM, Toolbox for ground motion processing and CS-based selection. Retrieved from https://github.com/volkanozsarac/EzGM.git.
  • Ozsarac, V., Karimzadeh, S., Askan, A., & Erberik, M. A. (2019). Comparison of energy-based responses of structural systems to real and simulated ground motion records. In Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2019) (pp. 2234–2243). doi:10.7712/120119.7073.18606
  • Padgett, J. E., Desroches, R., & Nilsson, E. (2010). Regional seismic risk assessment of bridge network in Charleston, South Carolina. Journal of Earthquake Engineering, 14(6), 918–933. doi:10.1080/13632460903447766
  • Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., … Vigano, D. (2014). Openquake engine: An open hazard (and risk) software for the global earthquake model. Seismological Research Letters, 85(3), 692–702. doi:10.1785/0220130087
  • Perdomo, C., Abarca, A., & Monteiro, R. (2020). Estimation of seismic expected annual losses for multi-span continuous RC bridge portfolios using a component-level approach. Journal of Earthquake Engineering, doi:10.1080/13632469.2020.1781710
  • Perdomo, C., & Monteiro, R. (2020). Simplified damage models for circular section reinforced concrete bridge columns. Engineering Structures, 217, 110794. doi:10.1016/j.engstruct.2020.110794
  • Perdomo, C., Monteiro, R., & Sucuoğlu, H. (2020). Development of fragility curves for single-column RC Italian bridges using nonlinear static analysis. Journal of Earthquake Engineering, doi:10.1080/13632469.2020.1760153
  • Pinho, R., Monteiro, R., Casarotti, C., & Delgado, R. (2009). Assessment of continuous span bridges through nonlinear static procedures. Earthquake Spectra, 25(1), 143–159. doi:10.1193/1.3050449
  • Porter, K. A. (2003). An overview of PEER’s performance-based earthquake engineering methodology. In 9th International Conference on Applications of Statistics and Probability in Civil Engineering.
  • Priestley, M. J. N. (2000). Performance based seismic design. Bulletin of the New Zealand Society for Earthquake Engineering, 33(3), 325–346. doi:10.5459/bnzsee.33.3.325-346
  • Priestley, M. J. N., & Grant, D. N. (2005). Viscous damping in seismic design and analysis. Journal of Earthquake Engineering, 9(sup2), 229–255. doi:10.1142/S1363246905002365
  • Priestley, M. J. N., Seible, F., & Calvi, G. M. (1996). Seismic design and retrofit of bridges. New York: John Wiley & Sons. doi:10.1002/9780470172858
  • Scott, B. D., Park, R., & Priestley, M. J. N. (1982). Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. Journal of the American Concrete Institute, 79(1), 13–27. doi:10.14359/10875
  • SEAOC Vision 2000. (1995). Performance based seismic engineering of buildings. Sacramento, CA: Structural Engineers Association of California.
  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. doi:10.2307/2333709
  • Silva, V., Crowley, H., Varum, H., Pinho, R., & Sousa, R. (2014). Evaluation of analytical methodologies used to derive vulnerability functions. Earthquake Engineering and Structural Dynamics, 43(2), 181–204. doi:10.1002/eqe.2337
  • Sørensen, M. B., & Lang, D. H. (2015). Incorporating simulated ground motion in seismic risk assessment: Application to the lower Indian Himalayas. Earthquake Spectra, 31(1), 71–95. doi:10.1193/010412EQS001M
  • Spacone, E., Ciampi, V., & Filippou, F. C. (1992). A beam element for seismic damage analysis. California: Earthquake Engineering Research Center Berkeley.
  • Ugurhan, B., & Askan, A. (2010). Stochastic strong ground motion simulation of the 12 november 1999 Düzce (Turkey) earthquake using a dynamic Corner frequency approach. Bulletin of the Seismological Society of America, 100(4), 1498–1512. doi:10.1785/0120090358
  • Ugurhan, B., Askan, A., & Erberik, M. A. (2011). A methodology for seismic loss estimation in urban regions based on ground-motion simulations. Bulletin of the Seismological Society of America, 101(2), 710–725. doi:10.1785/0120100159
  • Utkucu, M., Nalbant, S. S., McCloskey, J., Steacy, S., & Alptekin, Ö. (2003). Slip distribution and stress changes associated with the 1999 November 12, Düzce (Turkey) earthquake (Mw = 7.1). Geophysical Journal International, 153(1), 229–241. doi:10.1046/j.1365-246X.2003.01904.x
  • Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika, 29(3–4), 350–362. doi:10.2307/2332010
  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin - Seismological Society of America, 84(4), 974–1002.
  • Zelaschi, C., Monteiro, R., & Pinho, R. (2016). Parametric characterization of RC bridges for seismic assessment purposes. Structures, 7, 14–24. doi:10.1016/j.istruc.2016.04.003
  • Zhu, M., McKenna, F., & Scott, M. H. (2018). OpenSeesPy: Python library for the OpenSees finite element framework. SoftwareX, 7, 6–11. doi:10.1016/j.softx.2017.10.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.