Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 19, 2023 - Issue 5
331
Views
2
CrossRef citations to date
0
Altmetric
Articles

Bi-directional implementation of multiple-slider surface bearing to girder bridges: simplified 3-D modelling and seismic performance assessment

&
Pages 639-662 | Received 25 Oct 2020, Accepted 15 May 2021, Published online: 23 Aug 2021

References

  • Brito, M.B., Akiyama, M., Yamaguchi, H., Honda, R., & Ishigaki, N. (2020). Improving the seismic resilience of RC bridge piers through the use of a low-cost friction sliding system. In Proceedings of 17th World Conference on Earthquake Engineering (17WCEE), September 13–18, Sendai, Japan.
  • Brito, M.B., Ishibashi, H., & Akiyama, M. (2019). Shaking table tests of a reinforced concrete bridge pier with a low‐cost sliding pendulum system. Earthquake Engineering & Structural Dynamics, 48(3), 366–386. doi:10.1002/eqe.3140
  • Castaldo, P., Ripani, M., & Lo Priore, R. (2018). Influence of soil conditions on the optimal sliding friction coefficient for isolated bridges. Soil Dynamics and Earthquake Engineering, 111, 131–148. doi:10.1016/j.soildyn.2018.04.056
  • Castaldo, P., Gino, D., Bertagnoli, G., & Mancini, G. (2020). Resistance model uncertainty in non-linear finite element analyses of cyclically loaded reinforced concrete systems. Engineering Structures, 211, 110496. doi:10.1016/j.engstruct.2020.110496
  • Castaldo, P., Gino, D., & Mancini, G. (2019). Safety formats for non-linear finite element analysis of reinforced concrete structures: Discussion, comparison and proposals. Engineering Structures, 193, 136–153. doi:10.1016/j.engstruct.2019.05.029
  • Chang, C., & Spencer, B. F. Jr. (2010). Active base isolation of buildings subjected to seismic excitations. Earthquake Engineering & Structural Dynamics, 39(13), 1493–1512. doi:10.1002/eqe.1040
  • Chopra, A. K. (2000). Dynamics of structures: Theory and applications to earthquake engineering (2nd ed.). New Delhi, India: Prentice Hall; pp. 788–807.
  • Constantinou, M. C., Tsopelas, P., Kim, Y. S., & Okamoto, S. (1993). NCEER-Taisei coporation research program on sliding seismic isolation system for bridges and analytical study of a friction pendulum system (FPS). Report No NCEER-93-0020. New York: National Center for Earthquake Engineering Research.
  • Constantinou, M., Mokha, A., & Reinhorn, A. (1990). Teflon bearings in base isolation. II: modeling. Journal of Structural Engineering, 116(2), 455–474. doi:10.1061/(ASCE)0733-9445(1990)116:2(455)
  • Dang, J., Ebisawa, Y., & Igarashi, A. (2016). Incremental dynamic analysis for seismic response behavior of isolated bridges under bi-directional earthquake loading. Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering & Earthquake Engineering (SE/EE), 72(4), I_719–I_732. (in Japanese). doi:10.2208/jscejseee.72.I_719
  • Das, S., Gur, S., Mishra, S. K., & Chakraborty, S. (2015). Optimal performance of base isolated building considering limitation on excessive isolator displacement. Structure and Infrastructure Engineering, 11(7), 904–917. doi:10.1080/15732479.2014.921716
  • Datta, T. K. (2010). Seismic analysis of structures. New York: John Wiley & Sons; pp. 369–381.
  • Eröz, M., & DesRoches, R. (2008). Bridge seismic response as a function of the Friction Pendulum System (FPS) modeling assumptions. Engineering Structures, 30(11), 3204–3212. doi:10.1016/j.engstruct.2008.04.032
  • Fakhouri, M. Y., & Igarashi, A. (2012). Dynamic response control of multi-story structures by isolators with multiple plane sliding surfaces: A parametric study. Engineering Structures, 34, 81–94. doi:10.1016/j.engstruct.2011.08.042
  • Fakhouri, M. Y., & Igarashi, A. (2013). Multiple-slider surfaces bearing for seismic retrofitting of frame structures with soft first stories. Earthquake Engineering & Structural Dynamics, 42(1), 145–161. doi:10.1002/eqe.2198
  • Fenz, D. M., & Constantinou, M. C. (2008a). Mechanical behavior of multi-spherical sliding bearings. MCEER-08-0007. http://www.eng.buffalo.edu/mceer-reports/08/08-0007.pdf.
  • Fenz, D. M., & Constantinou, M. C. (2008b). Spherical sliding isolation bearings with adaptive behavior: Experimental verification. Earthquake Engineering & Structural Dynamics, 37(2), 185–205. doi:10.1002/eqe.750
  • Fenz, D. M., & Constantinou, M. C. (2008c). Spherical sliding isolation bearings with adaptive behavior: Theory. Earthquake Engineering & Structural Dynamics, 37(2), 163–183. doi:10.1002/eqe.751
  • Grant, D. N., Fenves, G. L., & Auricchio, F. (2004). Bridge isolation with high-damping rubber bearings–analytical modelling and system response. In 13th World Conference on Earthquake Engineering, Vancouver, BC.
  • Harvey, P. S., Jr., & Kelly, K. C. (2016). A review of rolling-type seismic isolation: Historical development and future directions. Engineering Structures, 125, 521–531. doi:10.1016/j.engstruct.2016.07.031
  • Harvey, P. S., Jr., Zéhil, G., & Gavin, H. P. (2014). Experimental validation of a simplified model for rolling isolation systems. Earthquake Engineering & Structural Dynamics, 43(7), 1067–1088. doi:10.1002/eqe.2387
  • Iemura, H., Taghikhany, T., & Jain, S. K. (2007). Optimum design of resilient sliding isolation system for seismic protection of equipments. Bulletin of Earthquake Engineering, 5(1), 85–103. doi:10.1007/s10518-006-9010-5
  • Iemura, H., Taghikhany, T., Takahashi, Y., & Jain, S. K. (2005). Effect of variation of normal force on seismic performance of resilient sliding isolation systems in highway bridges. Earthquake Engineering & Structural Dynamics, 34(15), 1777–1797. doi:10.1002/eqe.505
  • Igarashi, A., Sato, T., Shinohara, M., Kato, Y., Uno, H., & Adachi, Y. (2010a). Uplifting slide bearing (3) - Development of the analytical model. In Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas, Venice, Italy.
  • Igarashi, A., Sato, T., Shinohara, M., Kato, Y., Uno, H., & Adachi, Y. (2010b). Uplifting slide bearing (1) - Characterization of dynamic properties. In Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas, Venice, Italy, pp. 1–8. doi:10.2749/222137810796024925
  • Igarashi, A., Sato, T., Shinohara, M., Kato, Y., Uno, H., & Adachi, Y. (2010c). Uplifting slide bearing (2) - Verification of seismic response by tests. In Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas, Venice, Italy, pp. 47–54.
  • Igarashi, A., Sato, T., Shinohara, M., Kato, Y., Uno, H., & Adachi, Y. (2010d). Uplifting slide bearing (4) - Application for a 3-span steel girder. In Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas, Venice, Italy, pp. 24–30.
  • Igarashi, A., & Shiraishi, H. (2012). Seismic response control of bridges using UPSS Combined with energy dissipation devices. In 15th World Conference on Earthquake Engineering, Paper No.2280, pp. 24–28.
  • JRA. (2017). Design specification for highway bridges, Part V Seismic Design. Osaka, Japan: Maruzen.
  • Kalkan, E., & Reyes, J. C. (2015). Significance of rotating ground motions on behavior of symmetric- and asymmetric-plan structures: Part II. Multi-story structures. Earthquake Spectra, 31(3), 1613–1628. doi:10.1193/072012EQS242M
  • Kawamura, S., Kitazawa, K., Hisano, M., & Nagashima, I. (1988). Study of a sliding-type base isolation system. System composition and element properties. In Proceedings of 9th World Conference on Earthquake Engineering, pp. 735–740.
  • Lee, G. C., Ou, Y.-C., Liang, Z., Niu, T. C., & Song, J. (2007). Principles and performance of roller seismic isolation bearings for highway bridges. Report no. MCEER-07-0019. New York: Multidisciplinary Center for Earthquake.
  • Lee, H.-P., Kim, S., Cho, M.-S., & Ji, Y.-S. (2015). Application of sliding seismic isolator to building structures considering cost, performance and inspection: A case study. Structure and Infrastructure Engineering, 11(7), 851–868. doi:10.1080/15732479.2014.917113
  • Liu, Y., Dang, J., & Igarashi, A. (2019). Implications of bidirectional interaction on nonlinear seismic response of steel piers. Journal of Constructional Steel Research, 160, 289–300. doi:10.1016/j.jcsr.2019.05.044
  • Magliulo, G., & Ramasco, R. (2007). Seismic response of three‐dimensional r/c multi‐storey frame building. Earthquake Engineering & Structural Dynamics, 36(12), 1641–1657. doi:10.1002/eqe.709
  • Mokha, A., Constantinou, M., & Reinhorn, A. (1990). Teflon bearings in base isolation. I: Testing. Journal of Structural Engineering, 116(2), 438–454. doi:10.1061/(ASCE)0733-9445(1990)116:2(438)
  • Mosqueda, G., Whittaker, A. S., & Fenves, G. L. (2004). Characterization and modeling of friction pendulum bearings subjected to multiple components of excitation. Journal of Structural Engineering, 130(3), 433–442. doi:10.1061/(ASCE)0733-9445(2004)130:3(433)
  • Most, T. (2011). Assessment of structural simulation models by estimating uncertainties due to model selection and model simplification. Computers & Structures, 89(17-18), 1664–1672. doi:10.1016/j.compstruc.2011.04.012
  • Nagarajaiah, S., Reinhorn, A. M., & Constantinou, M. C. (1991). Nonlinear dynamic analysis of 3-D-base-isolated structures. Journal of Structural Engineering, 117(7), 2035–2054. doi:10.1061/(ASCE)0733-9445(1991)117:7(2035)
  • Nievas, C. I., & Sullivan, T. J. (2017). Accounting for directionality as a function of structural typology in performance-based earthquake engineering design. Earthquake Engineering & Structural Dynamics, 46(5), 791–809. doi:10.1002/eqe.2831
  • PWRI, KKE, Pacific Consultants Co Ltd, Yachiyo Engineering Co Ltd, Oiles Corporation, Kawakin Metal lndustries Co Ltd, Sankyo Oilless Industry, Nippon Chuzo K. K., & MIWA Group. (2006). Design manual for sliding seismic isolation systems for bridges (draft). https://www.pwri.go.jp/team/taishin/themes/slidingbearing_sub/jr351.pdf. (in Japanese).
  • Rigato, A. B., & Medina, R. A. (2007). Influence of angle of incidence on seismic demands for inelastic single-storey structures subjected to bi-directional ground motions. Engineering Structures, 29(10), 2593–2601. doi:10.1016/j.engstruct.2007.01.008
  • Schlune, H., Plos, M., & Gylltoft, K. (2012). Safety formats for non-linear analysis of concrete structures. Magazine of Concrete Research, 64(7), 563–574. doi:10.1680/macr.11.00046
  • Soneji, B. B., & Jangid, R. S. (2010). Response of an isolated cable-stayed bridge under bi-directional seismic actions. Structure and Infrastructure Engineering, 6(3), 347–363. doi:10.1080/15732470701596833
  • Tsai, M.-H., Wu, S.-Y., Chang, K.-C., & Lee, G. C. (2007). Shaking table tests of a scaled bridge model with rolling-type seismic isolation bearings. Engineering Structures, 29(5), 694–702. doi:10.1016/j.engstruct.2006.05.025
  • Wang, S., Hwang, J., Chang, K., Shiau, C., Lin, W., Tsai, M.-S., Hong, J. X., & Yang, Y. (2014). Sloped multi‐roller isolation devices for seismic protection of equipment and facilities. Earthquake Engineering & Structural Dynamics, 43(10), 1443–1461. doi:10.1002/eqe.2404
  • Wang, Y., Chung, L., & Liao, W. (1998). Seismic response analysis of bridges isolated with friction pendulum bearings. Earthquake Engineering & Structural Dynamics, 27(10), 1069–1093. doi:10.1002/(SICI)1096-9845(199810)27:10<1069::AID-EQE770>3.0.CO;2-S
  • Watson, R. J. (2007). Sliding isolation bearings in cold weather climates. In Innovations in bridge engineering technology (pp. 103–110). London: Taylor and Francis Group.
  • Wen, J., Han, Q., & Du, X. (2019). Shaking table tests of bridge model with friction sliding bearings under bi-directional earthquake excitations. Structure and Infrastructure Engineering, 15(9), 1264–1278. doi:10.1080/15732479.2019.1618350
  • Xiong, W., Zhang, S., Jiang, L., & Li, Y. (2017). Introduction of the convex friction system (CFS) for seismic isolation. Structural Control and Health Monitoring, 24(1), e1861. doi:10.1002/stc.1861
  • Yang, C., Tangaramvong, S., Tin-Loi, F., & Gao, W. (2017). Influence of interval uncertainty on the behavior of geometrically nonlinear elastoplastic structures. Journal of Structural Engineering, 143(1), 04016147. doi:10.1061/(ASCE)ST.1943-541X.0001618
  • Zayas, V. A., & Mahin, S. A. (1987). The FPS earthquake resisting system experimental report. New York: Earthquake Engineering Research Center.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.