Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 19, 2023 - Issue 6
1,679
Views
6
CrossRef citations to date
0
Altmetric
Article

Multi-hazard analysis and design of structures: status and research trends

ORCID Icon & ORCID Icon
Pages 845-874 | Received 25 Oct 2020, Accepted 21 Jun 2021, Published online: 15 Oct 2021

References

  • Adhikary, S.D., & Dutta, S.C. (2019). Blast resistance and mitigation strategies of structures: present status and future trends. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 172(4), 249–266.
  • Adriano, B., Mas, E., Koshimura, S., Estrada, M., & Jimenez, C. (2014). Scenarios of earthquake and tsunami damage probability in Callao region, Peru using tsunami fragility functions. Journal of Disaster Research, 9(6), 968–975. doi:10.20965/jdr.2014.p0968
  • Akiyama, M., & Frangopol, D.M. (2013). Life-cycle design of bridges under multiple hazards: earthquake, tsunami, and continuous deterioration. In 11th International Conference on Structural Safety and Reliability (11ICOSSAR), New York NY, USA.
  • Akiyama, M., & Frangopol, D.M. (2014). Long-term seismic performance of RC structures in an aggressive environment: Emphasis on bridge piers. Structure and Infrastructure Engineering, 10(7), 865–879. doi:10.1080/15732479.2012.761246
  • Akiyama, M., Frangopol, D.M., & Ishibashi, H. (2020). Toward life-cycle reliability-, risk- and resilience-based design and assessment of bridges and bridge networks under independent and interacting hazards: emphasis on earthquake, tsunami and corrosion. Structure and Infrastructure Engineering, 16(1), 26–50. doi:10.1080/15732479.2019.1604770
  • Akiyama, M., Frangopol, D.M., & Matsuzaki, H. (2011). Life-cycle reliability of RC bridge piers under seismic and airborne chloride hazards. Earthquake Engineering & Structural Dynamics, 40(15), 1671–1687. doi:10.1002/eqe.1108
  • Akiyama, M., Frangopol, D.M., Arai, M., & Koshimura, S. (2013). Reliability of bridges under tsunami hazards: Emphasis on the 2011 Tohoku-oki earthquake. Earthquake Spectra, 29(1_suppl), 295–S314. doi:10.1193/1.4000112
  • Alderighi, E., & Salvatore, W. (2009). Structural fire performance of earthquake-resistant composite steel-concrete frames. Engineering Structures, 31(4), 894–909. doi:10.1016/j.engstruct.2008.12.001
  • Alipour, A., Shafei, B., & Shinozuka, M. (2011). Performance evaluation of deteriorating highway bridges located in high seismic areas. Journal of Bridge Engineering, 16(5), 597–611. doi:10.1061/(ASCE)BE.1943-5592.0000197
  • Alipour, A., Shafei, B., & Shinozuka, M. (2013). Reliability-based calibration of load and resistance factors for design of RC bridges under multiple extreme events: scour and earthquake. Journal of Bridge Engineering, 18(5), 362–371. doi:10.1061/(ASCE)BE.1943-5592.0000369
  • Andrić, J.M., & Lu, D.-G. (2016). Risk assessment of bridges under multiple hazards in operation period. Safety Science, 83, 80–92. doi:10.1016/j.ssci.2015.11.001
  • Arablouei, A., & Kodur, V.K.R. (2016). Modeling delamination of fire insulation from steel structures subjected to blast loading. Engineering Structures, 116, 56–69. doi:10.1016/j.engstruct.2016.02.042
  • Argyroudis, S.A., Mitoulis, S.A., Hofer, L., Zanini, M.A., Tubaldi, E., & Frangopol, D.M. (2020). Resilience assessment framework for critical infrastructure in a multi-hazard environment: Case study on transport assets. Science of the Total Environment, 714, 136854. doi:10.1016/j.scitotenv.2020.136854
  • Ataei, N., & Padgett, J.E. (2013). Limit state capacities for global performance assessment of bridges exposed to hurricane surge and wave. Structural Safety, 41, 73–81. doi:10.1016/j.strusafe.2012.10.005
  • Attary, N., Unnikrishnan, V.U., van de Lindt, J.W., Cox, D.T., & Barbosa, A.R. (2017). Performance-based tsunami engineering methodology for risk assessment of structures. Engineering Structures, 141, 676–686. doi:10.1016/j.engstruct.2017.03.071
  • Attary, N., Van De Lindt, J.W., Barbosa, A.R., Cox, D.T., & Unnikrishnan, V.U. (2019). Performance-based tsunami engineering for risk assessment of structures subjected to multi-hazards: tsunami following earthquake. Journal of Earthquake Engineering, 25(10), 2065–2084. doi:10.1080/13632469.2019.1616335.
  • Avşar, Ö., Atak, B., & Caner, A. (2017). In-depth investigation of seismic vulnerability of an aging river bridge exposed to scour. Journal of Performance of Constructed Facilities, 31(5), 04017044. doi:10.1061/(ASCE)CF.1943-5509.0001036
  • Ayyub, B.M. (2014). Systems resilience for multi-hazard environments: definition, metrics, and valuation for decision making. Risk Analysis, 34(2), 340–355. doi:10.1111/risa.12093
  • Banerjee, S., & Prasad, G.G. (2013). Seismic risk assessment of reinforced concrete bridges in flood-prone regions. Structure and Infrastructure Engineering, 9(9), 952–968. doi:10.1080/15732479.2011.649292
  • Bansal, S., Biswas, S., & Singh, S.K. (2019). Holistic assessment of existing buildings: Indian context. Journal of Building Engineering, 25, 100793. doi:10.1016/j.jobe.2019.100793
  • Bedon, C., & Amadio, C. (2018). Numerical assessment of vibration control systems for multi-hazard design and mitigation of glass curtain walls. Journal of Building Engineering, 15, 1–13. doi:10.1016/j.jobe.2017.11.004
  • Behnam, B. (2016). Structural response of vertically irregular tall moment-resisting steel frames under pre- and post-earthquake fire. The Structural Design of Tall and Special Buildings, 25(12), 543–557. doi:10.1002/tal.1271
  • Behnam, B., & Abolghasemi, S. (2019). Post-earthquake fire performance of a generic fireproofed steel moment resisting structure. Journal of Earthquake Engineering, 1–26. doi:10.1080/13632469.2019.1628128
  • Behnam, B., & Rezvani, F.H. (2016). Structural evaluation of tall steel moment-resisting structures in simulated horizontally traveling post-earthquake fire. Journal of Performance of Constructed Facilities, 30(2), 04014207. doi:10.1061/(ASCE)CF.1943-5509.0000696
  • Behnam, B., & Ronagh, H. (2014b). Performance-based vulnerability assessment of multi-story reinforced concrete structures exposed to pre- and post-earthquake fire. Journal of Earthquake Engineering, 18(6), 853–875. doi:10.1080/13632469.2014.914454
  • Behnam, B., & Ronagh, H. (2014c). An engineering solution to improve post-earthquake fire resistance in important reinforced concrete structures. Advances in Structural Engineering, 17(7), 993–1009. doi:10.1260/1369-4332.17.7.993
  • Behnam, B., & Ronagh, H.R. (2014a). Behavior of moment-resisting tall steel structures exposed to a vertically traveling post-earthquake fire. The Structural Design of Tall and Special Buildings, 23(14), 1083–1096. doi:10.1002/tal.1109
  • Behnam, B., & Ronagh, H.R. (2014d). Post-earthquake fire resistance of CFRP strengthened reinforced concrete structures. The Structural Design of Tall and Special Buildings, 23(11), 814–832. doi:10.1002/tal.1084
  • Behnam, B., Lim, P.J., & Ronagh, H.R. (2015b). Plastic hinge relocation in reinforced concrete frames as a method of improving post-earthquake fire resistance. Structures, 2, 21–31. doi:10.1016/j.istruc.2014.12.003
  • Behnam, B., Ronagh, H.R., & Lim, P.J. (2015a). Numerical evaluation of the post-earthquake fire resistance of CFRP-strengthened reinforced concrete joints based on experimental observations. European Journal of Environmental and Civil Engineering, 20(2), 142–160. doi:10.1080/19648189.2015.1018448
  • Behnam, B., Skitmore, M., & Ronagh, H.R. (2015c). Risk mitigation of post-earthquake fire in urban buildings. Journal of Risk Research, 18(5), 602–621. doi:10.1080/13669877.2014.910686
  • Berto, L., Vitaliani, R., Saetta, A., & Simioni, P. (2009). Seismic assessment of existing RC structures affected by degradation phenomena. Structural Safety, 31(4), 284–297. doi:10.1016/j.strusafe.2008.09.006
  • Biondini, F., Camnasio, E., & Titi, A. (2015). Seismic resilience of concrete structures under corrosion. Earthquake Engineering & Structural Dynamics, 44(14), 2445–2466. doi:10.1002/eqe.2591
  • Bisadi, V., & Padgett, J.E. (2015). Explicit time-dependent multi-hazard cost analysis based on parameterized demand models for the optimum design of bridge structures. Computer-Aided Civil and Infrastructure Engineering, 30(7), 541–554. doi:10.1111/mice.12131
  • Braxtan, N.L., & Pessiki, S.P. (2011). Post earthquake fire performance of sprayed fire-resistive material on steel moment frames. Journal of Structural Engineering, 137(9), 946–953. doi:10.1061/(ASCE)ST.1943-541X.0000441
  • Bruneau, M., Barbato, M., Padgett, J.E., Zaghi, A.E., Mitrani-Reiser, J., & Li, Y. (2017). State of the art of multi-hazard design. Journal of Structural Engineering, 143(10), 03117002. doi:10.1061/(ASCE)ST.1943-541X.0001893
  • Bruneau, M., El-Bahey, S., Fujikura, S., & Keller, D. (2011). Structural fuses and concrete-filled steel shapes for seismic and multi-hazard resistant design. Bulletin of the New Zealand Society for Earthquake Engineering, 44(1), 45–52. doi:10.5459/bnzsee.44.1.45-52
  • Budimir, M.E.A., Atkinson, P.M., & Lewis, H.G. (2014). Earthquake-and-landslide events are associated with more fatalities than earthquakes alone. Natural Hazards, 72(2), 895–914. doi:10.1007/s11069-014-1044-4
  • Burchfield, C., Tadepalli, T., & Mullen, C. (2010). Multi-hazard evaluation of steel frame subsystem stability considering damage mapping from extreme lateral loading. In Structures Congress 2010: 19th Analysis and Computation Specialty Conference, 527–538. doi:10.1061/41131(370)46
  • Capacci, L., Biondini, F., & Titi, A. (2020). Lifetime seismic resilience of aging bridges and road networks. Structure and Infrastructure Engineering, 16(2), 266–286. doi:10.1080/15732479.2019.1653937
  • Carlson, N., & Saadeghvaziri, M.A. (2010). On multi-hazard considerations in design of structures. In 9th US National and 10th Canadian Conference on Earthquake Engineering, Toronto, Ontario, Canada.
  • Chandrasekaran, S., & Banerjee, S. (2015). Retrofit optimization for resilience enhancement of bridges under multi-hazard scenario. Journal of Structural Engineering, 142(8), C4015012.
  • Chang, K.-C., & Lin, Y.-B. (2015). Development of real-time monitoring system for multi-hazard bridge. In International Conference on Advances in Experimental Structural Engineering, University of Illinois at Urbana-Champaign, Illinois, IL.
  • Chaudhary, R.K., Roy, and T., & Matsagar, V. (2018). Fragility of reinforced concrete structure subjected to elevated temperature. In 10th International Conference on Structures in Fire (SiF2018), Belfast, UK.
  • Chaudhary, R.K., Roy, T., & Matsagar, V. (2020a). Member and structural fragility of reinforced concrete structure under fire. Journal of Structural Fire Engineering, 11(4), 409–445. doi:10.1108/JSFE-02-2019-0015
  • Chaudhary, R.K., Roy, T., & Matsagar, V. (2020b). Framework for fragility assessment of reinforced concrete portal frame subjected to elevated temperature. Structures, 28, 2785–2800. doi:10.1016/j.istruc.2020.10.078
  • Chen, H., & Liew, J.Y.R. (2005). Explosion and fire analysis of steel frames using mixed element approach. Journal of Engineering Mechanics, 131(6), 606–616. doi:10.1061/(ASCE)0733-9399(2005)131:6(606)
  • Chen, L., Fang, Q., Jiang, X., Ruan, Z., & Hong, J. (2015). Combined effects of high temperature and high strain rate on normal weight concrete. International Journal of Impact Engineering, 86, 40–56. doi:10.1016/j.ijimpeng.2015.07.002
  • Chen, S.-W., & Li, G.-Q. (2008). Advance in research on secondary fire of earthquake. Journal of Natural Disasters, 17(5), 120–126.
  • Chen, W., Guo, Z., Zhang, T., Zou, H., & Gu, J. (2016). Near-field blast test on reactive powder concrete-filled steel tubular columns after exposure to fire. International Journal of Protective Structures, 7(2), 193–212. doi:10.1177/2041419616637976
  • Chen, W., Luo, L., Guo, Z., & Zou, H. (2018). Strain rate effects on dynamic strength of high temperature-damaged RPC-FST. Journal of Constructional Steel Research, 147, 324–339. doi:10.1016/j.jcsr.2018.04.025
  • Chen, W., Pan, J., Guo, Z., & Zou, H. (2019). Damage evaluations of fire-damaged RPC-FST columns under blast loading. Thin-Walled Structures, 134, 319–332. doi:10.1016/j.tws.2018.10.031
  • Chen, Z., & Guo, X. (2015). Multi-hazard life-cycle analysis of flood-scour effects on seismic bridge performance. In Structures Congress, Portland, Oregon.
  • Cheng, X., Qian, H., Wang, C., & Fu, X. (2018). Seismic response and safety assessment of an existing concrete chimney under wind load. Shock and Vibration, 2018, 1–12. doi:10.1155/2018/1513479
  • Cheung, S.H., & Shao, Z. (2013). Reliability assessment of structural dynamic systems due to earthquake-induced tsunamis. In 11th International Conference on Structural Safety and Reliability (11ICOSSAR), New York, NY.
  • Chiodi, R., Asprone, D., Maimone, F., Prota, A., & Ricciardelli, F. (2011). Multi-hazard assessment of steel hangar structures subjected to seismic and wind loads. Applied Mechanics and Materials, 82, 778–783. doi:10.4028/www.scientific.net/AMM.82.778
  • Choi, S.-J., Choi, J.-H., Lee, T.-H., & Kim, J.-H.J. (2020). Damage assessment of prestressed concrete containment vessels behavior under blast induced fire loading. Structure and Infrastructure Engineering. doi:10.1080/15732479.2020.1811988
  • Choine, M.N., O’Connor, A., Gehl, P., D’Ayala, D., García-Fernández, M., Jiménez, M.-J., … Power, R. (2015). A multi-hazard RISK assessment methodology accounting for cascading hazard events. In 12th International Conference on Applications of Statistics and Probability (12ICASP), Vancouver, Canada.
  • Chou, C.-C., Tseng, W.-H., Huang, C.-H., Tsuang, S., Chang, L.-M., & Chen, Y.-H. (2020). A novel steel lever viscoelastic wall with amplified damper force-friction for wind and seismic resistance. Engineering Structures, 210, 110362. doi:10.1016/j.engstruct.2020.110362
  • Chulahwat, A., & Mahmoud, H. (2017). A combinatorial optimization approach for multi-hazard design of building systems with suspended floor slabs under wind and seismic hazards. Engineering Structures, 137, 268–284. doi:10.1016/j.engstruct.2017.01.074
  • Colombo, M., Martinelli, P., & Prisco, M.D. (2015). A design approach for tunnels exposed to blast and fire. Structural Concrete, 16(2), 262–272. doi:10.1002/suco.201400052
  • Corley, W.G. (2004). Lessons learned on improving resistance of buildings to terrorist attacks. Journal of Performance of Constructed Facilities, 18(2), 68–78. doi:10.1061/(ASCE)0887-3828(2004)18:2(68)
  • Corley, W.G., Mlakar, P.F., Sozen, M.A., & Thornton, C.H. (1998). The Oklahoma City bombing: Summary and recommendations for multi-hazard mitigation. Journal of Performance of Constructed Facilities, 12(3), 100–112. doi:10.1061/(ASCE)0887-3828(1998)12:3(100)
  • Corte, G.D., Landolfo, R., & Mazzolani, F.M. (2003). Post-earthquake fire resistance of moment resisting steel frames. Fire Safety Journal, 38(7), 593–612. doi:10.1016/S0379-7112(03)00047-X
  • Crosti, C., Duthinh, D., & Simiu, E. (2011). Risk consistency and synergy in multi-hazard design. Journal of Structural Engineering, 137(8), 844–849. doi:10.1061/(ASCE)ST.1943-541X.0000335
  • Cui, F., & Ghosn, M. (2019). Implementation of machine learning techniques into the subset simulation method. Structural Safety, 79, 12–25. doi:10.1016/j.strusafe.2019.02.002
  • Cui, F., Zhang, H., Ghosn, M., & Xu, Y. (2018). Seismic fragility analysis of deteriorating RC bridge substructures subject to marine chloride-induced corrosion. Engineering Structures, 155, 61–72. doi:10.1016/j.engstruct.2017.10.067
  • Cui, Z., Alipour, A., & Shafei, B. (2019). Structural performance of deteriorating reinforced concrete columns under multiple earthquake events. Engineering Structures, 191, 460–468. doi:10.1016/j.engstruct.2019.04.073
  • D’Ayala, D., & Gehl, P. (2014). Novel indicators for identifying critical INFRAstructure at RISK from natural hazards. In FP7 2013 Cooperation Work Programme, 1–117.
  • Decò, A., & Frangopol, D.M. (2011). Risk assessment of highway bridges under multiple hazards. Journal of Risk Research, 14(9), 1057–1089. doi:10.1080/13669877.2011.571789
  • Decò, A., & Frangopol, D.M. (2013). Life-cycle risk assessment of spatially distributed aging bridges under seismic and traffic hazards. Earthquake Spectra, 29(1), 127–153. doi:10.1193/1.4000094
  • Devendiran, D.K., Banerjee, S., & Mondal, A. (2021). Impact of climate change on multihazard performance of river-crossing bridges: Risk, resilience, and adaptation. Journal of Performance of Constructed Facilities, 35(1), 04020127. doi:10.1061/(ASCE)CF.1943-5509.0001538
  • Diamantidis, D. (2008). Current safety acceptance criteria in codes and standards – a critical review. In Structures Congress, Vancouver, British Columbia, Canada.
  • Dikanski, H., and Imam, B., & Hagen-Zanker, A. (2018). Effects of uncertain asset stock data on the assessment of climate change risks: A case study of bridge scour in the UK. Structural Safety, 71, 1–12. doi:10.1016/j.strusafe.2017.10.008
  • Dilley, M., Chen, R.S., Deichmann, U., Lerner-Lam, A., Arnold, M., Agwe, J., … Yetman, G. (2005). Natural disaster hotspots: a global risk analysis. World Bank Disaster Risk Management Series, 5, 1–132.
  • Ding, Y., Wang, M., Li, Z.-X., & Hao, H. (2013). Damage evaluation of the steel tubular column subjected to explosion and post-explosion fire condition. Engineering Structures, 55, 44–55. doi:10.1016/j.engstruct.2012.01.013
  • Dobashi, R. (2014). Fire and explosion disasters occurred due to the Great-East Japan Earthquake. Journal of Loss Prevention in the Process Industries, 31, 121–126. doi:10.1016/j.jlp.2014.03.001
  • Dogangun, A., Karaca, Z., Durmus, A., & Sezen, H. (2009). Cause of damage and failures in silo structures. Journal of Performance of Constructed Facilities, 23(2), 65–71. doi:10.1061/(ASCE)0887-3828(2009)23:2(65)
  • Dogruel, S., & Dargush, G. (2008). A framework for multi-hazard design and retrofit of passively damped structures. In AEI Conference, Building Integration Solutions, Denver, Colorado. doi:10.1061/41002(328)51
  • Domaneschi, M., De Gaetano, A., Casas, J.R., & Cimellaro, G.P. (2020). Deteriorated seismic capacity assessment of reinforced concrete bridge piers in corrosive environment. Structural Concrete, 21(5), 1823–1838. doi:10.1002/suco.202000106
  • Dong, Y., & Frangopol, D.M. (2016). Probabilistic time-dependent multi-hazard life-cycle assessment and resilience of bridges considering climate change. Journal of Performance of Constructed Facilities, 30(5), 04016034. doi:10.1061/(ASCE)CF.1943-5509.0000883
  • Dong, Y., Frangopol, D.M., & Saydam, D. (2013). Sustainability of bridge networks under flood-induced scour and earthquake. In 11th International Conference on Structural Safety and Reliability (11ICOSSAR), New York (NY), USA.
  • Duthinh, D., & Simiu, E. (2010). Safety of structures in strong winds and earthquakes: Multi-hazard considerations. Journal of Structural Engineering, 136(3), 330–333. doi:10.1061/(ASCE)ST.1943-541X.0000108
  • Echevarria, A., Zaghi, A.E., Christenson, R., & Accorsi, M. (2016). CFFT bridge columns for multi-hazard resilience. Journal of Structural Engineering, 142(8), C4015002. doi:10.1061/(ASCE)ST.1943-541X.0001292
  • Ellingwood, B., & Rosowsky, D. (1996). Combining snow and earthquake loads for limit states design. Journal of Structural Engineering, 122(11), 1364–1368. doi:10.1061/(ASCE)0733-9445(1996)122:11(1364)
  • Ellingwood, B.R. (2007). Structural design for fire conditions: new developments. In Structures Congress, Long Beach, CA. doi:10.1061/40946(248)9
  • Ellingwood, B.R., Rosowsky, D.V., Li, Y., & Kim, J.H. (2004). Fragility assessment of light-frame wood construction subjected to wind and earthquake hazards. Journal of Structural Engineering, 130(12), 1921–1930. doi:10.1061/(ASCE)0733-9445(2004)130:12(1921)
  • Ering, P., & Babu, G.L.S. (2020). Effect of spatial variability of earthquake ground motions on the reliability of road system. Soil Dynamics and Earthquake Engineering, 136, 106207.
  • Escribano, D.E., & Brennan, A.J. (2017). Stability of scour protection due to earthquake-induced liquefaction: Centrifuge modelling. Coastal Engineering, 129, 50–58. doi:10.1016/j.coastaleng.2017.08.015
  • Ettouney, M.M., Alampalli, S., & Agrawal, A.K. (2005). Theory of multi-hazards for bridge structures. Bridge Structures, 1(3), 281–291. doi:10.1080/15732480500275539
  • Fioklou, A., & Alipour, A. (2019). Significance of non-uniform scour on the seismic performance of bridges. Structure and Infrastructure Engineering, 15(6), 822–836. doi:10.1080/15732479.2019.1584226
  • Fiorillo, G., & Ghosn, M. (2018). Fragility analysis of bridges due to overweight traffic load. Structure and Infrastructure Engineering, 14(5), 619–633. doi:10.1080/15732479.2017.1380675
  • Fotopoulou, S.D., & Pitilakis, K.D. (2017). Vulnerability assessment of reinforced concrete buildings at precarious slopes subjected to combined ground shaking and earthquake induced landslide. Soil Dynamics and Earthquake Engineering, 93, 84–98. doi:10.1016/j.soildyn.2016.12.007
  • Fujikura, S., & Bruneau, M. (2012). Dynamic analysis of multi-hazard-resistant bridge piers having concrete-filled steel tube under blast loading. Journal of Bridge Engineering, 17(2), 249–258. doi:10.1061/(ASCE)BE.1943-5592.0000270
  • Fujikura, S., Bruneau, M., & Lopez-Garcia, D. (2008). Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading. Journal of Bridge Engineering, 13(6), 586–594. doi:10.1061/(ASCE)1084-0702(2008)13:6(586)
  • Gautam, D., & Dong, Y. (2018). Multi-hazard vulnerability of structures and lifelines due to the 2015 Gorkha earthquake and 2017 central Nepal flash flood. Journal of Building Engineering, 17, 196–201. doi:10.1016/j.jobe.2018.02.016
  • Gehl, P., & D’Ayala, D. (2016). Development of Bayesian networks for the multi-hazard fragility assessment of bridge systems. Structural Safety, 60, 37–46. doi:10.1016/j.strusafe.2016.01.006
  • Gehl, P., & D’Ayala, D. (2018). System loss assessment of bridge networks accounting for multi-hazard interactions. Structure and Infrastructure Engineering, 14(10), 1355–1371. doi:10.1080/15732479.2018.1434671
  • Gerasimidis, S., Khorasani, N.E., Garlock, M., Pantidis, P., & Glassman, J. (2017). Resilience of tall steel moment resisting frame buildings with multi-hazard post-event fire. Journal of Constructional Steel Research, 139, 202–219. doi:10.1016/j.jcsr.2017.09.026
  • Ghosh, A.K. (2008). Assessment of earthquake-induced tsunami hazard at a power plant site. Nuclear Engineering and Design, 238(7), 1743–1749. doi:10.1016/j.nucengdes.2007.12.007
  • Ghosh, J., & Padgett, J.E. (2009). Multi-hazard consideration of seismic and aging threats to bridges. In Structures Congress, Austin, TX. doi:10.1061/41031(341)61
  • Ghosn, M., & Wang, J. (2003). Reliability model for bridge scour analysis. In Life-Cycle Performance of Deteriorating Structures: Assessment, Design and Management, Lausanne, Switzerland. doi:10.1061/40707(240)26
  • Gidaris, I., Padgett, J.E., Barbosa, A.R., Chen, S., Cox, D., Webb, B., & Cerato, A. (2016). Multiple-hazard fragility and restoration models of highway bridges for regional risk and resilience assessment in the United States: State-of-the-art review. Journal of Structural Engineering, 143(3), 04016188.
  • Gill, J.C., & Malamud, B.D. (2016). Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth System Dynamics, 7(3), 659–679. doi:10.5194/esd-7-659-2016
  • Guo, X., & Chen, Z. (2016). Life-cycle multi-hazard framework for assessing flood scour and earthquake effects on bridge failure. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2(2), C4015004. doi:10.1061/AJRUA6.0000844
  • Guo, X., & Zhang, C. (2019). Seismic fragility analysis of corroded chimney structures. Journal of Performance of Constructed Facilities, 33(1), 04018087. doi:10.1061/(ASCE)CF.1943-5509.0001241
  • Guo, X., Badroddin, M., & Chen, Z. (2019). Scour-dependent empirical fragility modelling of bridge structures under earthquakes. Advances in Structural Engineering, 22(6), 1384–1398. doi:10.1177/1369433218815433
  • Guo, X., Wu, Y., & Guo, Y. (2016). Time-dependent seismic fragility analysis of bridge systems under scour hazard and earthquake loads. Engineering Structures, 121, 52–60. doi:10.1016/j.engstruct.2016.04.038
  • Guo, Z., Chen, W., Zhang, Y., & Zou, H. (2017). Post fire blast-resistances of RPC-FST columns using improved Grigorian model. International Journal of Impact Engineering, 107, 80–95. doi:10.1016/j.ijimpeng.2017.05.005
  • Harirchian, E., Kumari, V., Jadhav, K., Das, R.R., Rasulzade, S., & Lahmer, T. (2020). A machine learning framework for assessing seismic hazard safety of reinforced concrete buildings. Applied Sciences, 10(20), 7153. doi:10.3390/app10207153
  • Hariri-Ardebili, M.A., & Pourkamali-Anaraki, F. (2018a). Simplified reliability analysis of multi hazard risk in gravity dams via machine learning techniques. Archives of Civil and Mechanical Engineering, 18(2), 592–610. doi:10.1016/j.acme.2017.09.003
  • Hariri-Ardebili, M.A., & Pourkamali-Anaraki, F. (2018b). Support vector machine based reliability analysis of concrete dams. Soil Dynamics and Earthquake Engineering, 104, 276–295. doi:10.1016/j.soildyn.2017.09.016
  • Hatzikyriakou, A., Lin, N., Gong, J., Xian, S., Hu, X., & Kennedy, A. (2016). Component-based vulnerability analysis for residential structures subjected to storm surge impact from Hurricane Sandy. Natural Hazards Review, 17(1), 05015005. doi:10.1061/(ASCE)NH.1527-6996.0000205
  • He, H., Wei, K., Zhang, J., & Qin, S. (2020b). Application of endurance time method to seismic fragility evaluation of highway bridges considering scour effect. Soil Dynamics and Earthquake Engineering, 136, 106243. doi:10.1016/j.soildyn.2020.106243
  • He, L.-G., Hung, H.-H., Chuang, C.-Y., & Huang, C.-W. (2020a). Seismic assessments for scoured bridges with pile foundations. Engineering Structures, 211, 110454. doi:10.1016/j.engstruct.2020.110454
  • Hernandez-Fajardo, I., & Dueñas-Osorio, L. (2013). Probabilistic study of cascading failures in complex interdependent lifeline systems. Reliability Engineering & System Safety, 111, 260–272. doi:10.1016/j.ress.2012.10.012
  • Honeycutt, M.G., & Mauriello, M.N. (2005). Multi-hazard mitigation in the coastal zone: when meeting the minimum regulatory requirements isn’t enough. Solutions to Coastal Disasters, Charleston, SC.
  • Ikpong, A., & Bagchi, A. (2015). New method for climate change resilience rating of highway bridges. Journal of Cold Regions Engineering, 29(3), 04014013. doi:10.1061/(ASCE)CR.1943-5495.0000079
  • Imani, R., Mosqueda, G., & Bruneau, M. (2015a). Experimental study on post-earthquake fire resistance of ductile concrete-filled double-skin tube columns. Journal of Structural Engineering, 141(8), 04014192. doi:10.1061/(ASCE)ST.1943-541X.0001168
  • Imani, R., Mosqueda, G., & Bruneau, M. (2015b). Finite element simulation of concrete-filled double-skin tube columns subjected to post earthquake fires. Journal of Structural Engineering, 141(12), 04015055. doi:10.1061/(ASCE)ST.1943-541X.0001301
  • Ishibashi, H., Akiyama, M., Frangopol, D.M., Koshimura, S., Kojima, T., & Nanami, K. (2020). Framework for estimating the risk and resilience of road networks with bridges and embankments under both seismic and tsunami hazards. Structure and Infrastructure Engineering, 17(4), 494–514. doi:10.1080/15732479.2020.1843503
  • Izzuddin, B.A., Song, L., Elnashai, A.S., & Dowling, P.J. (2000). An integrated adaptive environment for fire and explosion analysis of steel frames – Part II: Verification and application. Journal of Constructional Steel Research, 53(1), 87–111. doi:10.1016/S0143-974X(99)00041-3
  • Jaimes, M.A., Reinoso, E., Ordaz, M., Huerta, B., Silva, R., Mendoza, E., & Rodríguez, J.C. (2016). A new approach to probabilistic earthquake-induced tsunami risk assessment. Ocean & Coastal Management, 119, 68–75. doi:10.1016/j.ocecoaman.2015.10.007
  • Jaimes, M.A., Reinoso, E.D., & Esteva, L. (2015). Risk analysis for structures exposed to several multi-hazard sources. Journal of Earthquake Engineering, 19(2), 297–312. doi:10.1080/13632469.2014.962673
  • Jalayer, F., Asprone, D., Prota, A., & Manfredi, G. (2011). Multi-hazard upgrade decision making for critical infrastructure based on life-cycle cost criteria. Earthquake Engineering & Structural Dynamics, 40(10), 1163–1179. doi:10.1002/eqe.1081
  • Jia, G., Gardoni, P., Trejo, D., & Mazarei, V. (2021). Stochastic modeling of deterioration and time-variant performance of reinforced concrete structures under joint effects of earthquakes, corrosion, and ASR. Journal of Structural Engineering, 147(2), 04020314. doi:10.1061/(ASCE)ST.1943-541X.0002884
  • Jin, L., Bai, J., Zhang, R., Li, L., & Du, X. (2021). Effect of elevated temperature on the low-velocity impact performances of reinforced concrete slabs. International Journal of Impact Engineering, 149, 103797. doi:10.1016/j.ijimpeng.2020.103797
  • Jin, L., Lan, Y., Zhang, R., & Du, X. (2019). Impact performances of RC beams at/after elevated temperature: a meso-scale study. Engineering Failure Analysis, 105, 196–214. doi:10.1016/j.engfailanal.2019.07.002
  • Johann, M.A., Albano, L.D., Fitzgerald, R.W., & Meacham, B.J. (2006). Performance-based structural fire safety. Journal of Performance of Constructed Facilities, 20(1), 45–53. doi:10.1061/(ASCE)0887-3828(2006)20:1(45)
  • Kakogiannis, D., Pascualena, F., Reymen, B., Pyl, L., Ndambi, J.M., Segers, E., … Krauthammer, T. (2013). Blast performance of reinforced concrete hollow core slabs in combination with fire: numerical and experimental assessment. Fire Safety Journal, 57, 69–82. doi:10.1016/j.firesaf.2012.10.027
  • Kallias, A.N., & Imam, B. (2016). Probabilistic assessment of local scour in bridge piers under changing environmental conditions. Structure and Infrastructure Engineering, 12(9), 1228–1241. doi:10.1080/15732479.2015.1102295
  • Kamath, P., Sharma, U.K., Kumar, V., Bhargava, P., Usmani, A., Singh, B., … Pankaj, P. (2015). Full-scale fire test on an earthquake-damaged reinforced concrete frame. Fire Safety Journal, 73, 1–19. doi:10.1016/j.firesaf.2015.02.013
  • Kameshwar, S., & Padgett, J.E. (2014). Multi-hazard risk assessment of highway bridges subjected to earthquake and hurricane hazards. Engineering Structures, 78, 154–166. doi:10.1016/j.engstruct.2014.05.016
  • Kanchanadevi, A., & Ramanjaneyulu, K. (2018). Effect of corrosion damage on seismic behavior of existing reinforced concrete beam-column sub-assemblages. Engineering Structures, 174, 601–617. doi:10.1016/j.engstruct.2018.07.094
  • Kanda, J. (1993). Simplified load combination factor for snow load. Structural Safety, 13(1-2), 45–51. doi:10.1016/0167-4730(93)90047-5
  • Kang, L., Ge, H., Magoshi, K., & Nonaka, T. (2019). Behavior of a steel bridge with large caisson foundations under earthquake and tsunami actions. Steel and Composite Structures, 31(6), 575–589.
  • Kang, L., Magoshi, K., Ge, H., & Nonaka, T. (2017). Accumulative response of large offshore steel bridge under severe earthquake and ship impact due to earthquake-induced tsunami flow. Engineering Structures, 134, 190–204. doi:10.1016/j.engstruct.2016.12.047
  • Kappes, M.S., Keiler, M., Elverfeldt, K.V., & Glade, T. (2012). Challenges of analyzing multi-hazard risk: A review. Natural Hazards, 64(2), 1925–1958. doi:10.1007/s11069-012-0294-2
  • Kashani, M.M., Crewe, A.J., & Alexander, N.A. (2013). Nonlinear stress-strain behavior of corrosion-damaged reinforcing bars including inelastic buckling. Engineering Structures, 48, 417–429. doi:10.1016/j.engstruct.2012.09.034
  • Kassir, M.K., & Ghosn, M. (2002). Chloride-induced corrosion of reinforced concrete bridge decks. Cement and Concrete Research, 32(1), 139–143. doi:10.1016/S0008-8846(01)00644-5
  • Kazantzi, A.K., & Vamvatsikos, D. (2020). Seismic and vibration performance rehabilitation for an industrial steel building. Practice Periodical on Structural Design and Construction, 25(2), 05020001. doi:10.1061/(ASCE)SC.1943-5576.0000475
  • Keefer, D.K. (2002). Investigating landslides caused by earthquakes – A historical review. Surveys in Geophysics, 23(6), 473–510. doi:10.1023/A:1021274710840
  • Khandel, O., & Soliman, M. (2019). Integrated framework for quantifying the effect of climate change on the risk of bridge failure due to floods and flood-induced scour. Journal of Bridge Engineering, 24(9), 04019090. doi:10.1061/(ASCE)BE.1943-5592.0001473
  • Khandel, O., & Soliman, M. (2021). Integrated framework for assessment of time-variant flood fragility of bridges using deep learning neural networks. Journal of Infrastructure Systems, 27(1), 04020045. doi:10.1061/(ASCE)IS.1943-555X.0000587
  • Khelifa, A., Garrow, L.A., Higgins, M.J., & Meyer, M.D. (2013). Impacts of climate change on scour-vulnerable bridges: Assessment based on HYRISK. Journal of Infrastructure Systems, 19(2), 138–146. doi:10.1061/(ASCE)IS.1943-555X.0000109
  • Khorasani, N.E., & Garlock, M.E.M. (2017). Overview of fire following earthquake: historical events and community responses. International Journal of Disaster Resilience in the Built Environment, 8(2), 158–174. doi:10.1108/IJDRBE-02-2015-0005
  • Khorasani, N.E., Garlock, M.E.M., & Quiel, S.E. (2015). Modeling steel structures in OpenSees: Enhancements for fire and multi-hazard probabilistic analyses. Computers & Structures, 157, 218–231. doi:10.1016/j.compstruc.2015.05.025
  • Kleingesinds, S., Lavan, O., & Venanzi, I. (2021). Life-cycle cost-based optimization of MTMDs for tall buildings under multiple hazards. Structure and Infrastructure Engineering, 17(7), 921–940. doi:10.1080/15732479.2020.1778741
  • Kolay, C., Al-Subaihawi, S., Marullo, T.M., Ricles, J.M., & Quiel, S.E. (2020). Multi-hazard real-time hybrid simulation of a tall building with damped outriggers. International Journal of Lifecycle Performance Engineering, 4(1/2/3), 103–132. doi:10.1504/IJLCPE.2020.108937
  • Korswagen, P.A., Jonkman, S.N., & Terwel, K.C. (2019). Probabilistic assessment of structural damage from coupled multi-hazards. Structural Safety, 76, 135–148. doi:10.1016/j.strusafe.2018.08.001
  • Kouchiyama, O., Kanda, T., Takenaka, Y., Miyazaki, M., Nakamura, M., & Kitamura, H. (2015). Experimental study on fatigue characteristics of lead rubber bearings under repeated small-amplitude loading. AIJ Journal of Technology and Design, 21(48), 639–644. doi:10.3130/aijt.21.639
  • Kumar, V., Sharma, U.K., Singh, B., & Bhargava, P. (2013). Effect of temperature on mechanical properties of pre-damaged steel reinforcing bars. Construction and Building Materials, 46, 19–27. doi:10.1016/j.conbuildmat.2013.03.051
  • Lange, D., Devaney, S., & Usmani, A. (2014). An application of the PEER performance-based earthquake engineering framework to structures in fire. Engineering Structures, 66, 100–115. doi:10.1016/j.engstruct.2014.01.052
  • Lazar, I., Neild, S.A., & Wagg, D.J. (2014). Inerter-based vibration suppression systems for laterally and base-excited structures. 9th International Conference on Structural Dynamics, EURODYN, Porto, Portugal.
  • Lazarov, L., Cvetkovska, M., & Todorov, K. (2013). Fire resistance of RC frame in case of post-earthquake fire. Journal of Structural Fire Engineering, 4(2), 87–94. doi:10.1260/2040-2317.4.2.87
  • Lee, K.H., & Rosowsky, D.V. (2006). Fragility analysis of wood-frame buildings considering combined snow and earthquake loading. Structural Safety, 28(3), 289–303. doi:10.1016/j.strusafe.2005.08.002
  • Lee, S., Davidson, R., Ohnishi, N., & Scawthorn, C. (2008). Fire following earthquake – Reviewing the state-of-the-art of modeling. Earthquake Spectra, 24(4), 933–967. doi:10.1193/1.2977493
  • Li, G.Q., Zhang, J.Z., Li, L.L., Jiang, B.H., Yang, T.C., & Jiang, J. (2020). Progressive collapse resistance of steel framed buildings under extreme events. 9th International Conference on Advances in Steel Structures (ICASS), China.
  • Li, Y., & Ellingwood, B.R. (2009). Framework for multi-hazard risk assessment and mitigation for wood-frame residential construction. Journal of Structural Engineering, 135(2), 159–168. doi:10.1061/(ASCE)0733-9445(2009)135:2(159)
  • Li, Y., & van de Lindt, J.W. (2012). Loss-based formulation for multiple hazards with application to residential buildings. Engineering Structures, 38, 123–133. doi:10.1016/j.engstruct.2012.01.006
  • Li, Y., Ahuja, A., & Padgett, J.E. (2012). Review of methods to assess, design for, and mitigate multiple hazards. Journal of Performance of Constructed Facilities, 26(1), 104–117. doi:10.1061/(ASCE)CF.1943-5509.0000279
  • Liao, K.-W., Hoang, N.-D., & Chien, F.-S. (2019). A multi-hazard safety evaluation framework for a submerged bridge using machine learning model. 13th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP 2019), Seoul, South Korea.
  • Liew, J.Y.R. (2008). Survivability of steel frame structures subject to blast and fire. Journal of Constructional Steel Research, 64(7–8), 854–866. doi:10.1016/j.jcsr.2007.12.013
  • Liew, J.Y.R., & Chen, H. (2004). Explosion and fire analysis of steel frames using fiber element approach. Journal of Structural Engineering, 130(7), 991–1000. doi:10.1061/(ASCE)0733-9445(2004)130:7(991)
  • Lin, T.-K., Wang, Y.-P., Huang, M.-C., & Tsai, C.-A. (2013). Implementation of a vibration-based bridge health monitoring system on scour issue. Applied Mechanics and Materials, 284-287, 1351–1357. doi:10.4028/www.scientific.net/AMM.284-287.1351
  • Liu, B., Siu, Y.L., & Mitchell, G. (2016). Hazard interaction analysis for multi-hazard risk assessment: a systematic classification based on hazard-forming environment. Natural Hazards and Earth System Sciences, 16(2), 629–642. doi:10.5194/nhess-16-629-2016
  • Liu, L., Frangopol, D.M., Mondoro, A., & Yang, D.Y. (2018). Sustainability-informed bridge ranking under scour based on transportation network performance and multi-attribute utility. Journal of Bridge Engineering, 23(10), 04018082. doi:10.1061/(ASCE)BE.1943-5592.0001296
  • Liu, L., Yang, D.Y., & Frangopol, D.M. (2020). Network-level risk-based framework for optimal bridge adaptation management considering scour and climate change. Journal of Infrastructure Systems, 26(1), 04019037. doi:10.1061/(ASCE)IS.1943-555X.0000516
  • Liu, Y.J., Wu, Y., Zhou, J.H., & Wang, Y. (2013). Structures under multi-hazards: state-of-the-art and research needs. Applied Mechanics and Materials, 438–439, 1879–1883. doi:10.4028/www.scientific.net/AMM.438-439.1879
  • Luo, H., & Paal, S.G. (2019). A locally weighted machine learning model for generalized prediction of drift capacity in seismic vulnerability assessments. Computer-Aided Civil and Infrastructure Engineering, 34(11), 935–950. doi:10.1111/mice.12456
  • Mahmoud, H., & Cheng, G. (2017). Framework for life-cycle cost assessment of steel buildings under seismic and wind hazards. Journal of Structural Engineering, 143(3), 04016186. doi:10.1061/(ASCE)ST.1943-541X.0001663
  • Malhotra, A., Roy, T., & Matsagar, V. (2020). Effectiveness of friction dampers in seismic and wind response control of connected adjacent steel buildings. Shock and Vibration, 2020,8304359 (1–21). doi:10.1155/2020/8304359
  • Mangalathu, S., & Jeon, J.-S. (2018). Classification of failure mode and prediction of shear strength for reinforced concrete beam-column joints using machine learning techniques. Engineering Structures, 160, 85–94. doi:10.1016/j.engstruct.2018.01.008
  • Mangalathu, S., & Jeon, J.-S. (2020). Regional seismic risk assessment of infrastructure systems through machine learning: Active learning approach. Journal of Structural Engineering, 146(12), 04020269. doi:10.1061/(ASCE)ST.1943-541X.0002831
  • Mangalathu, S., Sun, H., Nweke, C.C., Yi, Z., & Burton, H.V. (2020). Classifying earthquake damage to buildings using machine learning. Earthquake Spectra, 36(1), 183–208. doi:10.1177/8755293019878137
  • Marasco, S., Zamani Noori, A., & Cimellaro, G.P. (2017). Cascading hazard analysis of a hospital building. Journal of Structural Engineering, 143(9), 04017100. doi:10.1061/(ASCE)ST.1943-541X.0001808
  • Mardfekri, M., & Gardoni, P. (2015). Multi-hazard reliability assessment of offshore wind turbines. Wind Energy, 18(8), 1433–1450. doi:10.1002/we.1768
  • Martin, J., Alipour, A., & Sarkar, P. (2019). Fragility surfaces for multi-hazard analysis of suspension bridges under earthquakes and microbursts. Engineering Structures, 197, 109169. doi:10.1016/j.engstruct.2019.05.011
  • McCullough, M. C., Kareem, A., Donahue, A. S., & Westerink, J. J. (2013). Structural damage under multiple hazards in coastal environments. Journal of Disaster Research, 8(6), 1042–1051. doi:10.20965/jdr.2013.p1042
  • Meacham, B.J. (2016). Post-earthquake fire performance of buildings: Summary of a large-scale experiment and conceptual framework for integrated performance-based seismic and fire design. Fire Technology, 52(4), 1133–1157. doi:10.1007/s10694-015-0523-9
  • Memari, M., Mahmoud, H., & Ellingwood, B.R. (2014). Post-earthquake fire performance of moment resisting frames with reduced beam section connections. Journal of Constructional Steel Research, 103, 215–229. doi:10.1016/j.jcsr.2014.09.008
  • Memari, M., Wang, X., Mahmoud, H., & Kwon, O.-S. (2020). Hybrid simulation of small-scale steel braced frame subjected to fire and fire following earthquake. Journal of Structural Engineering, 146(1), 04019182. doi:10.1061/(ASCE)ST.1943-541X.0002466
  • Mirmomeni, M., Heidarpour, A., Zhao, X.-L., Hutchinson, C.R., Packer, J.A., & Wu, C. (2015). Mechanical properties of partially damaged structural steel induced by high strain rate loading at elevated temperatures – An experimental investigation. International Journal of Impact Engineering, 76, 178–188. doi:10.1016/j.ijimpeng.2014.10.001
  • Mirzaeefard, H., Hariri-Ardebili, M.A., & Mirtaheri, M. (2021). Time-dependent seismic fragility analysis of corroded pile-supported wharves with updating limit states. Soil Dynamics and Earthquake Engineering, 142, 106551. doi:10.1016/j.soildyn.2020.106551
  • Mishra, S., Vanli, O.A., Alduse, B.P., & Jung, S. (2017). Hurricane loss estimation in wood-frame buildings using Bayesian model updating: Assessing uncertainty in fragility and reliability analyses. Engineering Structures, 135, 81–94. doi:10.1016/j.engstruct.2016.12.063
  • Mohammadbagheri, S., & Shekastehband, B. (2020). Fire resistance of stiffened CFDST columns after earthquake-induced damages. Thin-Walled Structures, 154, 106865. doi:10.1016/j.tws.2020.106865
  • Mondoro, A., Frangopol, D.M., & Soliman, M. (2017). Optimal risk-based management of coastal bridges vulnerable to hurricanes. Journal of Infrastructure Systems, 23(3), 04016046. doi:10.1061/(ASCE)IS.1943-555X.0000346
  • Moradi, M., Tavakoli, H., & AbdollahZade, G. (2020). Sensitivity analysis of the failure time of reinforcement concrete frame under post-earthquake fire loading. Structural Concrete, 21(2), 625–641. doi:10.1002/suco.201900165
  • Mortagi, M., & Ghosh, J. (2020). Climate change considerations for seismic vulnerability assessment of aging highway bridges. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 6(1), 04020005. doi:10.1061/AJRUA6.0001038
  • Mousavi, S., Bagchi, A., & Kodur, V.K.R. (2008). Review of post-earthquake fire hazard to building structures. Canadian Journal of Civil Engineering, 35(7), 689–698. doi:10.1139/L08-029
  • Mück, M., Taubenböck, H., Post, J., Wegscheider, S., Strunz, G., Sumaryono, S., & Ismail, F.A. (2013). Assessing building vulnerability to earthquake and tsunami hazard using remotely sensed data. Natural Hazards, 68(1), 97–114. doi:10.1007/s11069-012-0481-1
  • Mulyani, R., Ahmadi, R., Pilakoutas, K., Hajirasouliha, I. & Taufika, (2015). A multi-hazard risk assessment of buildings in Padang city. Procedia Engineering, 125, 1094–1100. doi:10.1016/j.proeng.2015.11.093
  • Munich Report. (2015). Munich Re annual report 2015. Munich Reinsurance Company, Munich, Germany.
  • Nabian, M.A., & Meidani, H. (2018). Deep learning for accelerated seismic reliability analysis of transportation networks. Computer-Aided Civil and Infrastructure Engineering, 33(6), 443–458. doi:10.1111/mice.12359
  • Nikellis, A., Sett, K., & Whittaker, A.S. (2019). Multi-hazard design and cost-benefit analysis of buildings with special moment-resisting steel frames. Journal of Structural Engineering, 145(5), 04019031. doi:10.1061/(ASCE)ST.1943-541X.0002298
  • Nishino, T., Tanaka, T., & Hokugo, A. (2012). An evaluation method for the urban post-earthquake fire risk considering multiple scenarios of fire spread and evacuation. Fire Safety Journal, 54, 167–180. doi:10.1016/j.firesaf.2012.06.002
  • Olvera Ramírez, B.A., Olmos, B., & Jara, J.M. (2019). Reliability of a bridge subjected a multi-hazard: Scour and earthquakes. IABSE Symposium, Towards a Resilient Built Environment Risk and Asset Management, Guimaraes, Portugal, 1362–1369. doi:10.2749/guimaraes.2019.1362
  • Panchireddi, B., & Ghosh, J. (2021). Probabilistic seismic loss estimation of aging highway bridges subjected to multiple earthquake events. Structure and Infrastructure Engineering, 17(9), 1155–1174. doi:10.1080/15732479.2020.1801765
  • Pawlak, Z.M., & Lewandowski, R. (2020). The effectiveness of the passive damping system combining the viscoelastic dampers and inerters. International Journal of Structural Stability and Dynamics, 20(12), 2050140. doi:10.1142/S0219455420501400
  • Pei, B., Pang, W., Testik, F.Y., Ravichandran, N., & Liu, F. (2014). Mapping joint hurricane wind and surge hazards for Charleston, South Carolina. Natural Hazards, 74(2), 375–403. doi:10.1007/s11069-014-1185-5
  • Petrini, F., Gkoumas, K., Rossi, C., & Bontempi, F. (2020). Multi-hazard assessment of bridges in case of hazard chain: state of play and application to vehicle-pier collision followed by fire. Frontiers in Built Environment, 6, 580854. doi:10.3389/fbuil.2020.580854
  • Petrone, C., Rossetto, T., Baiguera, M., Bustamante, C.D.B., & Ioannou, I. (2020). Fragility functions for a reinforced concrete structure subjected to earthquake and tsunami in sequence. Engineering Structures, 205(15), 110120.
  • Phan, L.T., & Simiu, E. (2011). Estimation of risk for design of structures exposed to combined effects of hurricane wind speed and storm surge hazards. 11th International Conference on Applications of Statistics and Probability in Civil Engineering (11ICASP), Zurich, Switzerland.
  • Potra, F.A., & Simiu, E. (2009). Optimization and multi-hazard structural design. Journal of Engineering Mechanics, 135(12), 1472–1475. doi:10.1061/(ASCE)EM.1943-7889.0000057
  • Prasad, G.G., & Banerjee, S. (2013). The impact of flood-induced scour on seismic fragility characteristics of bridges. Journal of Earthquake Engineering, 17(6), 803–828. doi:10.1080/13632469.2013.771593
  • Prochazka, P. (2013). Effect of explosion and fire on underground structures. International Journal of Protective Structures, 4(4), 505–520. doi:10.1260/2041-4196.4.4.505
  • Pucinotti, R., Bursi, O.S., & Demonceau, J.F. (2011a). Post-earthquake fire and seismic performance of welded steel-concrete composite beam-to-column joints. Journal of Constructional Steel Research, 67(9), 1358–1375. doi:10.1016/j.jcsr.2011.03.006
  • Pucinotti, R., Bursi, O.S., Franssen, J.-M., & Lennon, T. (2011b). Seismic-induced fire resistance of composite welded beam-to-column joints with concrete-filled tubes. Fire Safety Journal, 46(6), 335–347. doi:10.1016/j.firesaf.2011.05.003
  • Quiel, S.E., & Marjanishvili, S.M. (2012). Fire resistance of a damaged steel building frame designed to resist progressive collapse. Journal of Performance of Constructed Facilities, 26(4), 402–409. doi:10.1061/(ASCE)CF.1943-5509.0000248
  • Reed, D.A., Friedland, C.J., Wang, S., & Massarra, C.C. (2016). Multi-hazard system-level logit fragility functions. Engineering Structures, 122, 14–23. doi:10.1016/j.engstruct.2016.05.006
  • Ren, Z.L., & Liu, A.W. (2013). Typical disaster chains and cascading effect caused by 2012 Xinyuan Ms 6.6 earthquake and 2008 Wenchuan Ms 8.0 earthquake of China. Sixth China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering, Chengdu, China.
  • Rezaee, M., & Aly, A.M. (2018). Vibration control in wind turbines to achieve desired system-level performance under single and multiple hazard loadings. Structural Control and Health Monitoring, 25(12), e2261. doi:10.1002/stc.2261
  • Ribeiro, F.L.A., Barbosa, A.R., & Neves, L.C. (2014). Application of reliability-based robustness assessment of steel moment resisting frame structures under post-mainshock cascading events. Journal of Structural Engineering, 140(8), A4014008. doi:10.1061/(ASCE)ST.1943-541X.0000939
  • Roback, K., Clark, M.K., West, A.J., Zekkos, D., Li, G., Gallen, S.F., … Godt, J.W. (2016). The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology,
  • Ronagh, H.R., & Behnam, B. (2012). Investigating the effect of prior damage on the post-earthquake fire resistance of reinforced concrete portal frames. International Journal of Concrete Structures and Materials, 6(4), 209–220. doi:10.1007/s40069-012-0025-9
  • Roy, T. (2021). Analysis method for multi-hazard protection of structures from earthquake, wind, blast, and fire (PhD Thesis). Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
  • Roy, T., & Matsagar, V. (2016). Structural protection from multiple hazards: a new paradigm. International Conference on Recent Advances in Mechanics and Materials (ICRAMM-2016), Burla, Odhisha, India.
  • Roy, T., & Matsagar, V. (2017). Multi-hazard assessment of steel buildings retrofitted with passive control devices. 16th World Conference on Earthquake Engineering (16WCEE), Santiago, Chile.
  • Roy, T., & Matsagar, V. (2019). Effectiveness of passive response control devices in buildings under earthquake and wind during design life. Structure and Infrastructure Engineering, 15(2), 252–268. doi:10.1080/15732479.2018.1547768
  • Roy, T., & Matsagar, V. (2020a). Probabilistic assessment of steel buildings installed with passive control devices under multi-hazard scenario of earthquake and wind. Structural Safety, 85, 101955. doi:10.1016/j.strusafe.2020.101955
  • Roy, T., & Matsagar, V. (2020b). Fire fragility of reinforced concrete panels under transverse out-of-plane and compressive in-plane loads. Fire Safety Journal, 113, 102976. doi:10.1016/j.firesaf.2020.102976
  • Roy, T., & Matsagar, V. (2021a). Multi-hazard analysis and design guidelines: recommendations for structure and infrastructure systems in Indian context. Current Science, 121(1), 44–55. https://www.currentscience.ac.in/Volumes/121/01/0044.pdf.
  • Roy, T., & Matsagar, V. (2021b). Mechanics of damage in reinforced concrete member under post-blast fire scenario. Structures, 31, 740–760. doi:10.1016/j.istruc.2021.02.005
  • Roy, T., & Matsagar, V. (2021c). Probabilistic framework for failure investigation of reinforced concrete wall panel under dynamic blast loads. Engineering Failure Analysis, 125, 105368. doi:10.1016/j.engfailanal.2021.105368
  • Roy, T., Saito, T., & Matsagar, V. (2021). Multihazard framework for investigating high-rise base-isolated buildings under earthquakes and long duration winds. Earthquake Engineering & Structural Dynamics, 50(5), 1334–1357. doi:10.1002/eqe.3401
  • Ruan, Z., Chen, L., & Fang, Q. (2015). Numerical investigation into dynamic responses of RC columns subjected for fire and blast. Journal of Loss Prevention in the Process Industries, 34, 10–21. doi:10.1016/j.jlp.2015.01.009
  • Saedi, S., Dizaji, F.S., Ozbulut, O.E., & Karaca, H.E. (2017). Structural vibration control using high strength and damping capacity shape memory alloys. Conference Proceedings of the Society for Experimental Mechanics Series, 2 Part F2, 259–266. Volume
  • Saini, D.S., & Shafei, B. (2018). Vulnerability assessment of concrete filled steel tube columns under multiple extreme events: corrosion and vehicular impact. Structures Congress, 2018, 224–235.
  • Salman, A.M., & Li, Y. (2018). A probabilistic framework for multi-hazard risk mitigation for electric power transmission systems subjected to seismic and hurricane hazards. Structure and Infrastructure Engineering, 14(11), 1499–1519. doi:10.1080/15732479.2018.1459741
  • Sanchez-Silva, M., Klutke, G.-A., & Rosowsky, D.V. (2011). Life-cycle performance of structures subject to multiple deterioration mechanisms. Structural Safety, 33(3), 206–217. doi:10.1016/j.strusafe.2011.03.003
  • Sarreshtehdari, A., & Khorasani, N.E. (2020). Post-earthquake emergency response time to locations of fire ignition. Journal of Earthquake Engineering, 1–28. doi:10.1080/13632469.2020.1802369
  • Scawthorn, C. (1985). Fire following earthquake. Fire Engineering, 138(4), 50–51. 44, 46–48.
  • Schleyer, G.K., & Campbell, D. (1996). Development of simplified analytical methods for predicting the response of offshore structures to blast and fire loading. Marine Structures, 9(10), 949–970. doi:10.1016/0951-8339(96)00008-1
  • Shah, A., Sharma, U., Kamath, P., Bhargava, P., Reddy, G., & Singh, T. (2016b). Effect of ductile detailing on the performance of a reinforced concrete building frame subjected to earthquake and fire. Journal of Performance of Constructed Facilities, 30(5), 04016035. doi:10.1061/(ASCE)CF.1943-5509.0000881
  • Shah, A.H., Sharma, U.K., Kamath, P., Bhargava, P., Reddy, G.R., & Singh, T. (2016a). Fire performance of earthquake-damaged reinforced-concrete structures. Materials and Structures, 49(7), 2971–2989. doi:10.1617/s11527-015-0699-y
  • Sinaie, S., Heidarpour, A., & Zhao, X.L. (2014a). Mechanical properties of cyclically-damaged structural mild steel at elevated temperatures. Construction and Building Materials, 52, 465–472. doi:10.1016/j.conbuildmat.2013.11.042
  • Sinaie, S., Heidarpour, A., & Zhao, X.L. (2014b). Stress-strain-temperature relation for cyclically-damaged structural mild steel. Engineering Structures, 77, 84–94. doi:10.1016/j.engstruct.2014.07.037
  • Singh, D.V., Roy, T., & Matsagar, V.A. (2016). Failure probability of industrial steel structures subjected to non-stationary earthquake and wind hazard. International Conference on Recent Advances in Mechanics and Materials (ICRAMM-2016), Burla, Odhisha, India.
  • Soltis, L.A. (1984). Low-rise timber buildings subjected to seismic, wind, and snow loads. Journal of Structural Engineering, 110(4), 744–753. doi:10.1061/(ASCE)0733-9445(1984)110:4(744)
  • Song, L., Izzuddin, B.A., Elnashai, A.S., & Dowling, P.J. (2000). An integrated adaptive environment for fire and explosion analysis of steel frames – Part I: Analytical models. Journal of Constructional Steel Research, 53(1), 63–85. doi:10.1016/S0143-974X(99)00040-1
  • Song, Q.-Y., Heidarpour, A., Zhao, X.-L., & Han, L.-H. (2016). Post-earthquake fire behavior of welded steel I-beam to hollow column connections: an experimental investigation. Thin-Walled Structures, 98, 143–153. doi:10.1016/j.tws.2015.03.032
  • Song, S.-T., Wang, C.-Y., & Huang, W.-H. (2015). Earthquake damage potential and critical scour depth of bridges exposed to flood and seismic hazards under lateral seismic loads. Earthquake Engineering and Engineering Vibration, 14(4), 579–594. doi:10.1007/s11803-015-0047-9
  • Sozen, M. A., Thornton, C. H., Corley, W. G., & Mlakar, P. F. (1998). The Oklahoma City bombing: Structure and mechanisms of the Murrah building. Journal of Performance of Constructed Facilities, 12(3), 120–136. doi:10.1061/(ASCE)0887-3828(1998)12:3(120)
  • Spencer, B.F., Christenson, R.E., & Dyke, S.J. (1999). Next generation benchmark control problems for seismically excited buildings. 2nd World Conference on Structural Control, New York, NY.
  • Stewart, M.G., & Mueller, J. (2020). Terrorism risks, chasing ghosts and infrastructure resilience. Sustainable and Resilient Infrastructure, 5(1–2), 78–89. doi:10.1080/23789689.2018.1448664
  • Stolle, J., Krautwald, C., Robertson, I., Achiari, H., Mikami, T., Nakamura, R., … Goseberg, N. (2020). Engineering lessons from the 28 September 2018 Indonesian tsunami: debris loading. Canadian Journal of Civil Engineering, 47(1), 1–12. doi:10.1139/cjce-2019-0049
  • Suksuwan, A., & Spence, S.M.J. (2018). Performance-based multi-hazard topology optimization of wind and seismically excited structural systems. Engineering Structures, 172, 573–588. doi:10.1016/j.engstruct.2018.06.039
  • Sun, F.-F., Wang, M., & Nagarajaiah, S. (2021). Multi-objective optimal design and seismic performance of negative stiffness damped outrigger structures considering damping cost. Engineering Structures, 229, 111615. doi:10.1016/j.engstruct.2020.111615
  • Swiss Report. (2015). Swiss Re annual report 2015. Swiss Reinsurance Company, Paris, Switzerland.
  • Talebi, E., Korzen, M., & Hothan, S. (2018). The performance of concrete filled steel tube columns under post-earthquake fires. Journal of Constructional Steel Research, 150, 115–128. doi:10.1016/j.jcsr.2018.07.013
  • Tanaka, T. (2012). Characteristics and problems of fires following the Great-East Japan earthquake in. Fire Safety Journal, 54, 197–202. doi:10.1016/j.firesaf.2012.07.002
  • Thanapol, Y., Akiyama, M., & Frangopol, D.M. (2016). Updating the seismic reliability of existing RC structures in a marine environment by incorporating the spatial steel corrosion distribution: application to bridge piers. Journal of Bridge Engineering, 21(7), 04016031. doi:10.1061/(ASCE)BE.1943-5592.0000889
  • Thöns, S., & Stewart, M.G. (2020). On the cost-efficiency, significance and effectiveness of terrorism risk reduction strategies for buildings. Structural Safety, 85, 101957. doi:10.1016/j.strusafe.2020.101957
  • Tilloy, A., Malamud, B.D., Winter, H., & Joly-Laugel, A. (2019). A review of quantification methodologies for multi-hazard interrelationships. Earth-Science Reviews, 196, 102881. doi:10.1016/j.earscirev.2019.102881
  • Torres, E., Seo, J., & Rogers, L. (2015). Probabilistic structural performance evaluation of concrete slab bridge system subjected to scour and earthquake. American Concrete Institute, ACI Special Publication, 2017(SP 316), 73–94.
  • Trifunac, M.D., & Todorovska, M.I. (1998). The Northridge, California, earthquake of 1994: fire ignition by strong shaking. Soil Dynamics and Earthquake Engineering, 17(3), 165–175. doi:10.1016/S0267-7261(97)00040-7
  • Unnikrishnan, V.U., & Barbato, M. (2015). Performance-based hurricane risk assessment of residential structures with consideration of multiple hazard sources. Structures Congress, Portland, Oregon (OR), USA. doi:10.1061/9780784479117.119
  • Unobe, I.D., & Sorensen, A.D. (2015). Multi-hazard analysis of a wind turbine concrete foundation under wind fatigue and seismic loadings. Structural Safety, 57, 26–34. doi:10.1016/j.strusafe.2015.07.003
  • van Verseveld, H.C.W., van Dongeren, A.R., Plant, N.G., Jäger, W.S., & den Heijer, C. (2015). Modelling multi-hazard hurricane damages on an urbanized coast with a Bayesian Network approach. Coastal Engineering, 103, 1–14. doi:10.1016/j.coastaleng.2015.05.006
  • Venanzi, I., Lavan, O., Ierimonti, L., & Fabrizi, S. (2018). Multi-hazard loss analysis of tall buildings under wind and seismic loads. Structure and Infrastructure Engineering, 14(10), 1295–1311. doi:10.1080/15732479.2018.1442482
  • Venkittaraman, A., & Banerjee, S. (2014). Enhancing resilience of highway bridges through seismic retrofit. Earthquake Engineering & Structural Dynamics, 43(8), 1173–1191. doi:10.1002/eqe.2392
  • Vitorino, H., Rodrigues, H., & Couto, C. (2020). Evaluation of post-earthquake fire capacity of reinforced concrete elements. Soil Dynamics and Earthquake Engineering, 128, 105900. doi:10.1016/j.soildyn.2019.105900
  • Wang, B., Zhao, L. Q., & Ma, Q. Y. (2012). Risk based decision making for bridge under multi-hazard. Applied Mechanics and Materials, 215–216, 105–107, 1215. 1219. doi:10.4028/www.scientific.net/AMM.215-216.105
  • Wang, C., Zhang, H., Feng, K., & Li, Q. (2017). Assessing hurricane damage costs in the presence of vulnerability model uncertainty. Natural Hazards, 85(3), 1621–1635. doi:10.1007/s11069-016-2651-z
  • Wang, J., Chen, W., Guo, Z., & Liang, W. (2016). Dynamic responses of RPC-filled steel tubular columns post fire under blast loading. The Open Civil Engineering Journal, 10(1), 236–245. doi:10.2174/1874149501610010236
  • Wang, L., & Fan, X.-Y. (2019). Failure cases of high chimneys: A review. Engineering Failure Analysis, 105, 1107–1117. doi:10.1016/j.engfailanal.2019.07.032
  • Wang, M., Nagarajaiah, S., & Sun, F.-F. (2020a). Dynamic characteristics and responses of damped outrigger tall buildings using negative stiffness. Journal of Structural Engineering, 146(12), 04020273. doi:10.1061/(ASCE)ST.1943-541X.0002846
  • Wang, S.-C., Liu, K.-Y., Chen, C.-H., & Chang, K.-C. (2015). Experimental investigation on seismic behavior of scoured bridge pier with pile foundation. Earthquake Engineering & Structural Dynamics, 44(6), 849–864. doi:10.1002/eqe.2489
  • Wang, X., & Hutchinson, T.C. (2020). Evolution of modal characteristics of a mid-rise cold-formed steel building during construction and earthquake testing. Earthquake Engineering & Structural Dynamics, 49(14), 1539–1558. doi:10.1002/eqe.3316
  • Wang, X., Ji, B., & Ye, A. (2020b). Seismic behavior of pile-group-supported bridges in liquefiable soils with crusts subjected to potential scour: insights from shake-table tests. Journal of Geotechnical and Geoenvironmental Engineering, 146(5), 04020030. doi:10.1061/(ASCE)GT.1943-5606.0002250
  • Wang, Y., & Rosowsky, D.V. (2013). Characterization of joint wind-snow hazard for performance-based design. Structural Safety, 43, 21–27. doi:10.1016/j.strusafe.2013.02.004
  • Wang, Y., & Rosowsky, D.V. (2016). Joint earthquake-snow hazard characterization and fragility analysis of wood-frame structures. Journal of Structural Engineering, 142(10), 04016081. doi:10.1061/(ASCE)ST.1943-541X.0001555
  • Wang, Y.-H., Tang, Q., Su, M.-N., Tan, J.-K., Wang, W.-Y., Lan, Y.-S., … Zhou, Y. (2020c). Post-earthquake fire performance of square concrete-filled steel tube columns. Thin-Walled Structures, 154, 106873. doi:10.1016/j.tws.2020.106873
  • Wang, Z., Dueñas-Osorio, L., & Padgett, J.E. (2014). Influence of scour effects on the seismic response of reinforced concrete bridges. Engineering Structures, 76, 202–214. doi:10.1016/j.engstruct.2014.06.026
  • Wen, B., Wu, B., & Niu, D. (2016). Post-earthquake fire performance of reinforced concrete columns. Structure and Infrastructure Engineering, 12(9), 1106–1126. doi:10.1080/15732479.2015.1085883
  • Wright, L., Chinowsky, P., Strzepek, K., Jones, R., Streeter, R., Smith, J.B., … Perkins, W. (2012). Estimated effects of climate change on flood vulnerability of U.S. bridges. Mitigation and Adaptation Strategies for Global Change, 17(8), 939–955. doi:10.1007/s11027-011-9354-2
  • Xi, F. (2016). Large deflection response of restrained steel beams under fire and explosion loads. SpringerPlus, 5(1), 752. doi:10.1186/s40064-016-2509-6
  • Xu, J., Tong, Y., Han, J., Han, Z., & Li, Z. (2019), Fire resistance of thin-walled tubular T-joints with internal ring stiffeners under post-earthquake fire. Thin-Walled Structures, 145, 106433.
  • Yang, D.Y., & Frangopol, D.M. (2019). Physics-based assessment of climate change impact on long-term regional bridge scour risk using hydrologic modeling: Application to Lehigh river watershed. Journal of Bridge Engineering, 24(11), 04019099. doi:10.1061/(ASCE)BE.1943-5592.0001462
  • Yang, D.Y., & Frangopol, D.M. (2020a). Risk-based portfolio management of civil infrastructure assets under deep uncertainties associated with climate change: a robust optimization approach. Structure and Infrastructure Engineering, 16(4), 531–546. doi:10.1080/15732479.2019.1639776
  • Yang, D.Y., & Frangopol, D.M. (2020b). Risk-based vulnerability analysis of deteriorating coastal bridges under hurricanes considering deep uncertainty of climatic and socioeconomic changes. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 6(3), 0001075.
  • Yanweerasak, T., Pansuk, W., Akiyama, M., & Frangopol, D.M. (2018). Life-cycle reliability assessment of reinforced concrete bridges under multiple hazards. Structure and Infrastructure Engineering, 14(7), 1011–1024. doi:10.1080/15732479.2018.1437640
  • Yassin, M.H., Bagchi, A., & Kodur, V.K.R. (2008). Structural performance of stud walls under normal and post-earthquake fire exposure. Structures Congress, Vancouver, British Columbia (BC), Canada.
  • Yassin, M.H., Bagchi, A., & Kodur, V.K.R. (2010). Mitigation of post-earthquake fire risk to building structures. 6th International Conference on Structures in Fire (SiF), East Lansing, Michigan (MI), USA.
  • Yeh, H., Francis, M., Peterson, C., Katada, T., Latha, G., Chadha, R.K., … Raghuraman, G. (2007). Effects of the 2004 Great Sumatra Tsunami: southeast Indian coast. Journal of Waterway, Port, Coastal, and Ocean Engineering, 133(6), 382–400. doi:10.1061/(ASCE)0733-950X(2007)133:6(382)
  • Yi, N.-H., Lee, S.-W., Choi, S.-J., & Kim, J.-H.J. (2015). Performance evaluations of PSC panel from impact-induced fire loading. Magazine of Concrete Research, 67(23), 1257–1273. doi:10.1680/macr.14.00173
  • Yilmaz, T., & Banerjee, S. (2018). Impact spectrum of flood hazard on seismic vulnerability of bridges. Structural Engineering and Mechanics, 66(4), 515–529.
  • Yin, Y., Li, Y., & Bulleit, W.M. (2009). Simulation of combination of snow and earthquake hazards. Structures Congress, Austin, TX.
  • Yin, Y.-J., & Li, Y. (2011). Probabilistic loss assessment of light-frame wood construction subjected to combined seismic and snow load. Engineering Structures, 33(2), 380–390. doi:10.1016/j.engstruct.2010.10.018
  • Yu, H. X., & Liew, J. Y. R. (2005a). Steel framed structures subjected to the combined effects of blast and fire – Part 1: State-of-the-art review. Advanced Steel Construction, 1(1), 79–96.
  • Yu, H. X., & Liew, J. Y. R. (2005b). Steel framed structures subjected to the combined effects of blast and fire – Part 2: Case study. Advanced Steel Construction, 1(1), 97–116.
  • Yuan, Z., Fang, C., Parsaeimaram, M., & Yang, S. (2017). Cyclic behavior of corroded reinforced concrete bridge piers. Journal of Bridge Engineering, 22(7), 04017020. doi:10.1061/(ASCE)BE.1943-5592.0001043
  • Zaghi, A.E., Padgett, J.E., Bruneau, M., Barbato, M., Li, Y., Mitrani-Reiser, J., & McBride, A. (2016). Establishing common nomenclature, characterizing the problem, and identifying future opportunities in multi-hazard design. Journal of Structural Engineering, 142(12), H2516001. doi:10.1061/(ASCE)ST.1943-541X.0001586
  • Zaky, A., Özcan, O., & Avşar, Ö. (2020). Seismic failure analysis of concrete bridges exposed to scour. Engineering Failure Analysis, 115, 104617. doi:10.1016/j.engfailanal.2020.104617
  • Zelleke, D.H., Saha, S.K., & Matsagar, V.A. (2020). Multihazard response control of base-isolated buildings under bidirectional dynamic excitation. Shock and Vibration, 2020, 1–24. doi:10.1155/2020/8830460
  • Zhai, C., Chen, L., Xiang, H., & Fang, Q. (2016). Experimental and numerical investigation into RC beams subjected to blast after exposure to fire. International Journal of Impact Engineering, 97, 29–45. doi:10.1016/j.ijimpeng.2016.06.004
  • Zhang, C., Li, H., & Gao, W. (2020). Development of a novel friction damped joint for damage-plasticity control of precast concrete walls. Engineering Structures, 219, 110850. doi:10.1016/j.engstruct.2020.110850
  • Zhang, S., & Zhang, L.M. (2017). Impact of the 2008 Wenchuan earthquake in China on subsequent long-term debris flow activities in the epicentral area. Geomorphology, 276, 86–103. doi:10.1016/j.geomorph.2016.10.009
  • Zhang, Y., Burton, H.V., Sun, H., & Shokrabadi, M. (2018). A machine learning framework for assessing post-earthquake structural safety. Structural Safety, 72, 1–16. doi:10.1016/j.strusafe.2017.12.001
  • Zhu, B., & Frangopol, D.M. (2013). Risk-based approach for optimum maintenance of bridges under traffic and earthquake loads. Journal of Structural Engineering, 139(3), 422–434. doi:10.1061/(ASCE)ST.1943-541X.0000671
  • Zhu, B., & Frangopol, D.M. (2016). Time-variant risk assessment of bridges with partially and fully closed lanes due to traffic loading and scour. Journal of Bridge Engineering, 21(6), 04016021. doi:10.1061/(ASCE)BE.1943-5592.0000817
  • Zhu, J., & Zhang, W. (2018). Probabilistic fatigue damage assessment of coastal slender bridges under coupled dynamic loads. Engineering Structures, 166, 274–285. doi:10.1016/j.engstruct.2018.03.073
  • Zolfaghari, M. R., Peyghaleh, E., & Nasirzadeh, G. (2009). Fire following earthquake, intra-structure ignition modeling. Journal of Fire Sciences, 27(1), 45–79. doi:10.1177/0734904108094516

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.