Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 19, 2023 - Issue 10
358
Views
0
CrossRef citations to date
0
Altmetric
Articles

Fatigue reliability assessment and life-cycle cost analysis of roadway bridges equipped with weigh-in-motion systems

, ORCID Icon, , , &
Pages 1317-1333 | Received 09 Jun 2021, Accepted 08 Oct 2021, Published online: 05 Jan 2022

References

  • Bayane, I., Long, L., Thöns, S., & Brühwiler, E. (2019). Quantification of the conditional value of SHM data for the fatigue safety evaluation of a road viaduct. 13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13, Seoul, South Korea.
  • Bertoncelli, A., & Silvestri, S. (2019). The “special influence line as a useful tool for the determination of the stress history in the procedure for the fatigue verifications of bridge. XXVII Congresso C.T.A. Bologna, Italy.
  • Birgin, H. B., Laflamme, S., D’Alessandro, A., Garcia-Macias, E., & Ubertini, F. (2020). A weigh-in-motion characterization algorithm for smart pavements based on conductive cementitious materials. Sensors, 20(3), 659.
  • Chen, Z. W., Xu, Y. L., & Wang, X. M. (2012). SHMS-based fatigue reliability analysis of multiloading suspension bridges. Journal of Structural Engineering, 138(3), 299–307. doi:10.1061/(ASCE)ST.1943-541X.0000460
  • Deng, Y., Zhang, M., Feng, D.-M., & Li, A.-Q. (2021). Predicting fatigue damage of highway suspension bridge hangers using weigh-in-motion data and machine learning. Structure and Infrastructure Engineering, 17(2), 233–248. doi:10.1080/15732479.2020.1734632
  • Diamantidis, D., Sykora, M., & Sousa, H. (2019). Quantifying the Value of Structural Health Information (SHI) for Decision Support - Guide for practising engineers (COST Action TU1402).
  • Downing, S. D., & Socie, D. F. (1982). Simple rainflow counting algorithms. International Journal of Fatigue, 4(1), 31–40. doi:10.1016/0142-1123(82)90018-4
  • Eurocode 0. (2005). Basis of structural design, Eurocode 0: EN 1990. Brussels, Belgium: European Committee for Standardization.
  • Eurocode 3. (2005). Design of steel structures-Part 1-9: Fatigue, Eurocode 3: EN 1993-1-9. Brussels, Belgium: European Committee for Standardization.
  • Farreras-Alcover, I., Andersen, J. E., & Mc Fadyen, N. (2016). Assessing temporal requirements for SHM campaigns. Proceedings of the Institution of Civil Engineers - Forensic Engineering, 169(2), 61–71.
  • Farreras-Alcover, I., Chryssanthopoulos, M. K., & Andersen, J. E. (2017). Data-based models for fatigue reliability of orthotropic steel bridge decks based on temperature, traffic and strain monitoring. International Journal of Fatigue, 95, 104–119. doi:10.1016/j.ijfatigue.2016.09.019
  • Frangopol, D. M., Dong, Y., & Sabatino, S. (2017). Bridge life-cycle performance and cost: analysis, prediction, optimisation and decision-making. Structure and Infrastructure Engineering, 13(10), 1239–1257. doi:10.1080/15732479.2016.1267772
  • Frangopol, D. M., Strauss, A., & Kim, S. (2008). Bridge reliability assessment based on monitoring. Journal of Bridge Engineering, 13(3), 258–270. doi:10.1061/(ASCE)1084-0702(2008)13:3(258)
  • Guo, T., & Chen, Y.-W. (2013). Fatigue reliability analysis of steel bridge details based on field-monitored data and linear elastic fracture mechanics. Structure and Infrastructure Engineering, 9(5), 496–505. doi:10.1080/15732479.2011.568508
  • Guo, T., Frangopol, D. M., & Chen, Y. (2012). Fatigue reliability assessment of steel bridge details integrating weigh-in-motion data and probabilistic finite element analysis. Computers and Structures, 112–113, 245–257.
  • Haugen, T., Levy, J. R., Aakre, E., & Tello, M. E. P. (2016). Weigh-in-motion equipment – experiences and challenges. Transportation Research Procedia, 14, 1423–1432. doi:10.1016/j.trpro.2016.05.215
  • Ierimonti, L., Caracoglia, L., Venanzi, I., & Materazzi, A. L. (2017). Investigation on life-cycle damage cost of wind-excited tall buildings considering directionality effects. Journal of Wind Engineering and Industrial Aerodynamics, 171, 207–218. doi:10.1016/j.jweia.2017.09.020
  • Ierimonti, L., Venanzi, I., & Caracoglia, L. (2018). Life-cycle damage-based cost analysis of tall buildings equipped with tuned mass dampers. Journal of Wind Engineering and Industrial Aerodynamics, 176, 54–64. doi:10.1016/j.jweia.2018.03.009
  • Jensen, J. S. (2020). Innovative and sustainable operation and maintenance of bridges. Structure and Infrastructure Engineering, 16(1), 72–83. doi:10.1080/15732479.2019.1604772
  • Joint Committee on Structural Safety. (2011). Probabilistic model code part 3: Resistance models. Switzerland.
  • Kim, S., & Frangopol, D. M. (2011). Cost effective lifetime structural health monitoring based on availability. Journal of Structural Engineering, 137(1), 22–33. doi:10.1061/(ASCE)ST.1943-541X.0000280
  • KISTLER. (2021). https://www.kistler.com/it/applications/sensor-technology/pesatura-dinamica-wim.
  • Kleingesinds, S., Lavan, O., & Venanzi, I. (2020). Life-cycle cost-based optimization of MTMDs for tall buildings under multiple hazards. Structure and Infrastructure Engineering, 17(7), 921–940.
  • Kwon, K., & Frangopol, D. M. (2010). Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data. International Journal of Fatigue, 32(8), 1221–1232. doi:10.1016/j.ijfatigue.2010.01.002
  • Lu, N., Liu, Y., & Deng, Y. (2019). Fatigue reliability evaluation of orthotropic steel bridge decks based on site-specific weigh-in-motion measurements. International Journal of Steel Structures, 19(1), 181–192. doi:10.1007/s13296-018-0109-8
  • Ludescher, H., & Brühwiler, E. (2009). Dynamic amplification of traffic loads on road bridges. Structural Engineering International, 19(2), 190–197. doi:10.2749/101686609788220231
  • Ma, R., Xu, S., Wang, D., & Chen, A. (2018). Vehicle models for fatigue loading on steel box-girder bridges based on weigh-in-motion data. Structure and Infrastructure Engineering, 14(6), 701–713. doi:10.1080/15732479.2017.1359308
  • Micheli, L., Cao, L., Laflamme, S., & Alipour, A. (2020). Life-cycle cost evaluation strategy for high-performance control systems under uncertainties. Journal of Engineering Mechanics, 146(2), 04019134. doi:10.1061/(ASCE)EM.1943-7889.0001711
  • Micheli, L., & Laflamme, S. (2020). Kriging-Based Design for Robust High-Performance Control Systems. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part. A: Civil Engineering, 6(4), 04020037.
  • Miner, M. (1945). Cumulative damage in fatigue. Journal of Applied Mechanics, 12(3), A159–164. doi:10.1115/1.4009458
  • National Cooperative Highway Research Program. (2004). Equipment for collecting traffic load data. Transportation Research Board of the National Academies.
  • Neves, A. C., Leander, J., Gonzalez, I., & Karoumi, R. (2019). An approach to decision making analysis for implementation of structural health monitoring in bridges. Structural Control and Health Monitoring, 26(6), e2352. doi:10.1002/stc.2352
  • Norske Veritas, D. (2011). Fatigue design of offshore steel structures. No. DNV-RP-C203.
  • Nowak, A. S., & Collins, K. R. (2000). Reliability of structures. McGraw Hill Higher Education.
  • Okasha, N. M., & Frangopol, D. M. (2012). Integration of structural health monitoring in a system performance based life-cycle bridge management framework. Structure and Infrastructure Engineering, 8(11), 999–1016.
  • Park, J. Y., Park, Y. C., & Kim, H. K. (2018). A methodology for fatigue reliability assessment considering stress range distribution truncation. International Journal of Steel Structures, 18(4), 1242–1251. doi:10.1007/s13296-018-0104-0
  • Rackwitz, R. (2000). Optimization-the basis of code-making and reliability verification. Structural Safety, 22(1), 27–60. doi:10.1016/S0167-4730(99)00037-5
  • Sacconi, S., Ierimonti, L., Venanzi, I., & Ubertini, F. (2021). Life-cycle cost analysis of bridges subjected to fatigue damage. Journal of Infrastructure Preservation and Resilience, 2(1), 25. doi:10.1186/s43065-021-00040-3
  • Sekuła, K., & Kołakowski, P. (2012). Piezo‐based weigh‐in‐motion system for the railway transport. Structural Control and Health Monitoring, 19(2), 199–215. doi:10.1002/stc.416
  • Soriano, M., Casas, J. R., & Ghosn, M. (2017). Simplified probabilistic model for maximum traffic load from weigh-in-motion data. Structure and Infrastructure Engineering, 13(4), 454–467. doi:10.1080/15732479.2016.1164728
  • Sousa, H., Costa, B. J. A., Henriques, A. A., Bento, J., & Figueiras, J. A. (2015). Assessment of traffic load events and structural effects on road bridges based on strain measurements. Journal of Civil Engineering and Management, 22(4), 457–469. doi:10.3846/13923730.2014.897991
  • Sousa, H., Rozsas, A., Slobbe, A., & Courage, W. (2020). A novel pro-active approach towards SHM-based bridge management supported by FE analysis and Bayesian methods. Structure and Infrastructure Engineering, 16(2), 233–246. doi:10.1080/15732479.2019.1649287
  • Sousa, H., Wenzel, H., & Thöns, S. (2019). Quantifying the Value of Structural Health Information (SHI) for decision support - Guide for operators (COST Action TU1402).
  • Straub, D., Chatzi, E., Bismut, E., Courage, W., Döhler, M., Faber, M.H., … Zonta, D. (2017). Value of information: A roadmap to quantifying the benefit of structural health monitoring. ICOSSAR - 12th International Conference on Structural Safety & Reliability. Vienna, Austria.
  • Sun, B., Xu, Y.-L., Wang, F.-Y., Li, Z., & Zhu, Q. (2019). Multi-scale fatigue damage prognosis for long-span steel bridges under vehicle loading. Structure and Infrastructure Engineering, 15(4), 524–538. doi:10.1080/15732479.2018.1562478
  • The MathWorks Inc. (2018). MATLAB R2018b: Release note user’s guide. Natick, MA: The MathWorks, Inc.
  • Thöns, S. (2018). On the value of monitoring information for the structural integrity and risk management. Computer-Aided Civil and Infrastructure Engineering, 33(1), 79–94. doi:10.1111/mice.12332
  • Thöns, S. (2019). Quantifying the Value of Structural Health Information (SHI) for decision support - Guide for scientists (COST Action 1402).
  • Tong, G., Aiqun, L., & Jianhui, L. (2008). Fatigue life prediction of welded joints in orthotropic steel decks considering temperature effect and increasing traffic flow. Structural Health Monitoring, 7(3), 189–202.
  • Torti, M., Venanzi, I., Laflamme, S., & Ubertini, F. (2021). Life-cycle management cost analysis of transportation bridges equipped with seismic structural health monitoring systems. Structural Health Monitoring, 147592172199662. doi:10.1177/1475921721996624
  • Torti, M., Venanzi, I., & Ubertini, F. (2020). Seismic structural health monitoring for reducing life cycle cost of road bridges. EURODYN 2020 XI International Conference on Structural Dynamics. Athens, Greece. doi:10.47964/1120.9086.18691
  • U.S. Department of Transportation Federal Highway Administration. (2010). WIM Data Analyst’s Manual, FHWA-IF-10-018.
  • Venanzi, I., Castellani, R., Ierimonti, L., & Ubertini, F. (2019). An automated procedure for assessing local reliability index and life-cycle cost of alternative girder bridge solutions. Advances in Civil Engineering, 2019, 1–17. doi:10.1155/2019/5152031
  • Venanzi, I., Ierimonti, L., & Caracoglia, L. (2020). Life-cycle-cost optimization for the wind load design of tall buildings equipped with TMDs. Wind and Structures. An International Journal, 30(4), 379–392.
  • Venanzi, I., Lavan, O., Ierimonti, L., & Fabrizi, S. (2018). Multi-hazard loss analysis of tall buildings under wind and seismic loads. Structure and Infrastructure Engineering, 14(10), 1295–1311. doi:10.1080/15732479.2018.1442482
  • Wang, F.-Y., Xu, Y.-L., & Asce, F. (2019). Traffic load simulation for long-span suspension bridges. Journal of Bridge Engineering, 24(5), 05019005. doi:10.1061/(ASCE)BE.1943-5592.0001381
  • Wu, C., Wu, P., Wang, J., Jiang, R., Chen, M., & Wang, X. (2020). Critical review of data-driven decision-making in bridge operation and maintenance. Structure and Infrastructure Engineering, 1–24. doi:10.1080/15732479.2020.1833946
  • Zhang, J., & Au, F. (2017). Fatigue reliability assessment considering traffic flow variation based on weigh-in-motion data. Advances in Structural Engineering, 20(1), 125–138. doi:10.1177/1369433216646011
  • Zhang, L., Haas, C., & Tighe, S.L. (2007). Evaluating weigh-in-motion sensing technology for traffic data collection. Annual Conference of the Transportation Association of Canada. Sakskatoon, Saskatchewan, Canada.
  • Zonta, D., Glisic, B., & Adriaenssens, S. (2014). Value of information: impact of monitoring on decision‐making. Structural Control and Health Monitoring, 21(7), 1043–1056. doi:10.1002/stc.1631

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.