Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 19, 2023 - Issue 11
458
Views
8
CrossRef citations to date
0
Altmetric
Article

On the vertical coupling effect of ballasted tracks in multi–span simply–supported railway bridges under operating conditions

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1633-1655 | Received 30 Oct 2021, Accepted 09 Feb 2022, Published online: 14 Mar 2022

References

  • Ahlbeck, D., Meacham, H., & Prause, R. (1978). The development of analytical models for railroad track dynamics. In A. Kerr (Ed.), Railroad track mechanics and technology (pp. 239–263). Oxford: Pergamon Press.
  • Bongini, E., & Poisson, F. (2009). Ground vibrations simulation cases parameters. In Technical report SNCF. France: Société Nationale des Chemins de Fer Français (SNCF).
  • Bonifácio, C., Ribeiro, D., Calçada, R., & Delgado, R. (2014). Dynamic behaviour of a short span filler-beam railway bridge under high-speed traffic. In Proc. 2nd Int. Conf. on Railway Technology: Research, Development and Maintenance
  • Bornet, L., Andersson, A., Zwolski, J., & Battini, J. (2015). Influence of the ballasted track on the dynamic properties of a truss railway bridge. Structure and Infrastructure Engineering, 11(6), 796–803. doi:10.1080/15732479.2014.912242
  • Cantero, D., Arvidsson, T., OBrien, E., & Karoumi, R. (2016). Train-track-bridge modelling and review of parameters. Structure and Infrastructure Engineering, 12(9), 1051–1064. doi:10.1080/15732479.2015.1076854
  • CEN, EN 1991-2. (2003). Eurocode 1: Actions on structures - part 2: traffic loads on bridges. Brussels: European Committee for Standardization.
  • CEN/TC250. (2005). Eurocode: Basis of structural design. Annex A2: Application for bridges. Final version. Brussels: European Committee for Standardization.
  • CEN/TC256. (2017). EN 13674-1:2011 + A1:2017 Railway applications - Track - Rail - Part 1: Vignole railway rails 46 kg/m and above. Brussels: European Committee for Standardization.
  • Chellini, G., Nardini, L., & Salvatore, W. (2011). Dynamical identification and modelling of steel-concrete composite high-speed railway bridges. Structure and Infrastructure Engineering, 7(11), 823–841. doi:10.1080/15732470903017240
  • Chen, Z., Zhai, W., & Wang, K. (2017). A locomotive-track coupled vertical dynamics model with gear transmissions. Vehicle System Dynamics, 55(2), 244–267. doi:10.1080/00423114.2016.1254260
  • Clark, R., Dean, P., Elkins, J., & Newton, S. (1982). An invesigation into the dynamic effects of railway vehicles running on corrugated rails. Journal of Mechanical Engineering Science, 24(2), 65–76. doi:10.1243/JMES_JOUR_1982_024_015_02
  • Doménech, A., Museros, P., & Martínez-Rodrigo, M. (2014). Influence of the vehicle model on the prediction of the maximum bending response of simply-supported bridges under high-speed railway traffic. Engineering Structures, 72, 123–139. doi:10.1016/j.engstruct.2014.04.037
  • Esveld, C. (2001). Modern railway track. M.R.T.-Productions.
  • Frýba, L. (2008). Dynamic behaviour of bridges due to high-speed trains. In Workshop for high-speed railways, in: Bridges for high-speed railways (pp. 137–158). Florida: CRC Press.
  • Galvín, P., Romero, A., Moliner, E., Connolly, D., & Mart I Inez-Rodrigo, M. (2021). Fast simulation of railway bridge dynamics accounting for soil-structure interaction. Bulletin of Earthquake Engineering, DOI . doi:10.1007/s10518-021-01191-0
  • Galvín, P., Romero, A., Moliner, E., De Roeck, G., & Martínez-Rodrigo, M. (2021). On the dynamic characterisation of railway bridges through experimental testing. Engineering Structures, 226, 111261. doi:10.1016/j.engstruct.2020.111261
  • Hoorpah, W. (2008). Dynamic calculations of high-speed railway bridges in France: Some case studies. In R. Delgado, R. Calcada, J. M. Goicolea, & F. Gabaldon (eds.), Dynamics of high-speed railway bridges (pp. 9–14). Florida: CRC Press.
  • Jahangiri, M., & Zakeri, A. (2017). Dynamic analysis of train-bridge system under one-way and two-way high-speed train passing. Structural Engineering and Mechanics, 64(1), 33–44. DOI doi:10.12989/sem.2017.64.1.033
  • Jesús, A., Dimitrovová, Z., & Silva, M. (2014). A statistical analysis of the dynamic response of a railway viaduct. Engineering Structures, 71, 244–259. doi:10.1016/j.engstruct.2014.04.012
  • Kim, B. H., Stubbs, N., & Park, T. (2005). A new method to extract modal parameters using output-only responses. Journal of Sound and Vibration, 282(1–2), 215–230. doi:10.1016/j.jsv.2004.02.026
  • Kouroussis, G., Connolly, D., Alexandrou, G., & Vogiatzis, K. (2015). The effect of railway local irregularities on ground vibration. Transportation Research Part D, 39, 17–30. doi:10.1016/j.trd.2015.06.001
  • Kouroussis, G., Gazetas, G., Anastasopoulos, I., Conti, C., & Verlinden, O. (2011). Discrete modelling of vertical track-soil coipling for vehicle-track dynamics. Soil Daynamics and Earthquake Engineering, 31(12), 1711–1723. doi:10.1016/j.soildyn.2011.07.007
  • Liu, K., Lombaert, G., & Roeck, G. D. (2014). Dynamic analysis of multispan viaducts with weak coupling between adjacent spans. Journal of Bridge Engineering, 19(1), 83–90. doi:10.1061/(ASCE)BE.1943-5592.0000476
  • Lombaert, G., Degrande, G., Kogut, J., & François, S. (2006). The experimental validation of a numerical model for the prediction of railway induced vibrations. Journal of Sound and Vibration, 297(3-5), 512–535. doi:10.1016/j.jsv.2006.03.048
  • Lou, P. (2005). A vehicle-track bridge interaction element considering vehicle’s pitching effect. Finite Elements in Analysis and Design, 41(4), 397–427. doi:10.1016/j.finel.2004.07.004
  • Malveiro, J., Ribeiro, D., Sousa, C., & Calçada, R. (2018). Model updating of a dynamic model of a composite steel-concrete railway viaduct based on experimental tests. Engineering Structures, 164, 40–52. doi:10.1016/j.engstruct.2018.02.057
  • Manterola, J. (2006). Puentes: Apuntes para su diseño, cálculo y construcción. Servicio de Publicaciones del Colegio de Caminos, Canales y Puertos [in Spanish].
  • Martínez-Rodrigo, M. D., Moliner, E., Romero, A., De Roeck, G., & Galvín, P. (2020). Maximum resonance and cancellation phenomena in orthotropic plates traversed by moving loads: Application to railway bridges. International Journal of Mechanical Sciences, 169, 105316. doi:10.1016/j.ijmecsci.2019.105316
  • Melis, M. (2007). Embankments and ballast in high speed rail. Fourth part: High-speed railway alignments in Spain (1). Certain alternatives [in Spanish]. Revista de Obras Públicas, (3476), 41–66.
  • Melo, L. T., Malveiro, J., Ribeiro, D., Calçada, R., & Bittencourt, T. (2020). Dynamic analysis of the train-bridge system considering the non-linear behaviour of the track-deck interface. Engineering Structures, 220, 110980. doi:10.1016/j.engstruct.2020.110980
  • Ministerio de Fomento GdE. (2010). Instrucción de acciones a considerar en puentes de ferrocarril. Actions in railway bridges [in Spanish].
  • Moliner, E., Romero, A., Sánchez-Quesada, J., Martínez-Rodrigo, M., & Galvín, P. (2020). Vertical coupling effect of the ballasted track on the dynamic behavior of multitrack railway bridges composed by adjacent decks. In M. Papadrakakis, M. Fragiadakis, & C. Papadimitriou (eds.), EURODYN 2020: XI International Conference on Structural Dynamics. Proceedings (Vol. 1, pp: 1666–1679). Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens (NTUA).
  • Museros, P., Moliner, E., & Martínez-Rodrigo, M. (2013). Free vibrations of simply-supported beam bridges under moving loads: Maximum resonance, cancellation and resonant vertical acceleration. Journal of Sound and Vibration, 332(2), 326–345. doi:10.1016/j.jsv.2012.08.008
  • Naeimi, M., Zakeri, J. A., Esmaeili, M., & Mehrali, M. (2015). Dynamic response of sleepers in a track with uneven rail irregularities using a 3d vehicle-track model with sleeper beams. Archive of Applied Mechanics, 85(11), 1679–1699. doi:10.1007/s00419-015-1012-9
  • Nguyen, K., Goicolea, J. M., & Galbadón, F. (2014). Comparison of dynamic effects of high-speed traffic load on ballasted track using simplified two-dimensional and full three-dimensional model. Journal of Rail and Rapid Transit, 228(2), 128–142. doi:10.1177/0954409712465710
  • Peixer, M. A., Montenegro, P. A., Carvalho, H., Ribeiro, D., Bittencourt, T. N., & Calçada, R. (2021). Running safety evaluation of a train moving over a high-speed railway viaduct under different track conditions. Engineering Failure Analysis, 121, 105133. doi:10.1016/j.engfailanal.2020.105133
  • Punetha, P., Nimbalkar, S., & Khabbaz, H. (2020). Analytical evaluation of ballasted track substructure response under repeated train loads. International Journal of Geomechanics, 20(7), 04020093. doi:10.1061/(ASCE)GM.1943-5622.0001729
  • Rauert, T., Bigelow, H., Hoffmeister, B., & Feldmann, M. (2010). On the prediction of the interaction effect caused by continuous ballast on filler beam railway bridges by experimentally supported numerical studies. Engineering Structures, 32(12), 3981–3988. doi:10.1016/j.engstruct.2010.09.009
  • Rebelo, C., Silva, L., Rigueiro, C., & Pircher, M. (2008). Dynamic behaviour of twin single-span ballasted railway viaducts. field measurements and modal identification. Engineering Structures, 30(9), 2460–2469. doi:10.1016/j.engstruct.2008.01.023
  • Rigueiro, C., Rebelo, C., & Silva, L. (2006a). Vibration assessment of railway viaducts under real traffic using bridge-track models. In T. U. Press (ed.), Computational methods in engineering and science. Berlin, Heidelberg: Springer.AQ14]
  • Rigueiro, C., Rebelo, C., & Silva, L. (2006b). Vibration of the railway track-viaduct system under moving vehicles taking into account the interaction effect. In M. D. Munck (ed.), ISMA 2006: Noise and vibration engineering, Katholieke Universiteit Leuven, Department of Mechanical Engineering.
  • Rigueiro, C., Rebelo, C., & Silva, L. (2010). Influence of ballast models in the dynamic response of railway visducts. Journal of Sound and Vibration, 329(15), 3030–3040. doi:10.1016/j.jsv.2010.02.002
  • Rocha, J., Henriques, A., & Calçada, R. (2012). Safety assessment of a short span railway bridge for high-speed traffic using simulation techniques. Engineering Structures, 40, 141–154. doi:10.1016/j.engstruct.2012.02.024
  • Rocha, J., Henriques, A., & Calçada, R. (2014). Probabilistic safety assessment of a short span high-speed railway bridge. Engineering Structures, 71, 99–111. doi:10.1016/j.engstruct.2014.04.018
  • Rodrigues, A., & Dimitrovová, Z. (2013). Optimization of the ballast layer in high-speed railway tracks with genetic algorithms. In Z. Dimitrovová, J. C. G. R de Almeida, R. de Moura (eds.), Proceedings of the 11th International Conference on Vibration Problems (ICOVP-2013) (pp: 1–13). AMPTAC.
  • Romero, A., Galvín, P., & Domínguez, J. (2012). Comportamiento dinámico de viaductos cortos considerando la interacción vehículo-vía-estructura-suelo. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño en Ingeniería, 28(1), 55–63. doi:10.1016/j.rimni.2011.11.004
  • Romero, A., Solís, M., Domínguez, J., & Galvín, P. (2013). Soil-structure interaction in resonant railway bridges. Soil Dynamics and Earthquake Engineering, 47, 108–116. doi:10.1016/j.soildyn.2012.07.014
  • Sun, Y., & Dhanasekar, M. (2002). Influence of the railway track parameters to the vertical and lateral impact. In Conference on railway engineering. Wollongong: Railway Technical Society of Australasia (RTSA).
  • Ticona, L., Ribeiro, D., Calçada, R., & Bittencourt, T. (2020). Validation of a vertical train–track–bridge dynamic interaction model based on limited experimental data. Structure and Infrastructure Engineering, 16(1), 181–201. doi:10.1080/15732479.2019.1605394
  • Wang, Y., Dimitrovová, Z., & Yau, J. (2018). Dynamic responses of vehicle ballasted track interaction system for heavy haul trains. In MATEC Web of Conferences 148, 05004, EDP Sciences–Web of Conferences.
  • Wu, Q., Sun, Y., Spiryagin, M., & Cole, C. (2021). Railway track longitudinal force model. Vehicle System Dynamics, 59(1), 155–170. doi:10.1080/00423114.2019.1673445
  • Xiao, X., Yan, Y., & Hu, Z. (2020). Effect of random structural damage on vehicle-track-bridge coupled response. International Journal of Damage Mechanics, 29(1), 103–125. doi:10.1177/1056789519860203
  • Zacher10 M., & Baeb̧ler, M. (2008). Dynamic behaviour of ballast on railway bridges. In R. Delgado, R. Calcada, J. M. Goicolea, & F. Gabaldon (eds.), Dynamics of high-speed railway bridges. Florida: CRC Press.
  • Zakeri, A., Shadfar, M., & Feizi, M. (2014). Sensitivity analysis of bridge-track-train system to parameters of railway. Latin American Journal of Solids and Structures, 11(4), 598–612. doi:10.1590/S1679-78252014000400003
  • Zangeneh, A., Battini, J., Pacoste, C., & Karoumi, R. (2019). Fundamental modal properties of simply supported railway bridges considering soil-structure interaction effects. Soil Dynamics and Earthquake Engineering, 121, 212–218. doi:10.1016/j.soildyn.2019.03.022
  • Zhai, W. (1996). Two simple fast integration methods for large -scale dynamic problems in engineering. International Journal for Numerical Methods in Engineering, 39(24), 4199–4214. doi:10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
  • Zhai, W., Han, Z., Chen, Z., Ling, L., & Zhu, S. (2019). Train-track-bridge dynamic interaction: A state-of-the-art review. Vehicle System Dynamics, 57(7), 984–1027. doi:10.1080/00423114.2019.1605085
  • Zhai, W., Wang, K., & Cai, C. (2009). Fundamentals of vehicle-track coupled dynamics. Vehicle System Dynamics, 47(11), 1349–1376. doi:10.1080/00423110802621561
  • Zhai, W., Wang, K., & Lin, J. (2004). Modelling and experiment of railway ballast vibrations. Journal of Sound and Vibration, 270(4–5), 673–683. doi:10.1016/S0022-460X(03)00186-X
  • Zhang, X., Zhao, C., & Zhai, W. (2017). Dynamic behavior analysis of high-speed railway ballast under moving vehicle loads using discrete element method. International Journal of Geomechanics, 17(7), 04016157. doi:10.1061/(ASCE)GM.1943-5622.0000871

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.