Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 19, 2023 - Issue 12
839
Views
2
CrossRef citations to date
0
Altmetric
Article

Digital Twin-driven framework for fatigue lifecycle management of steel bridges

, , , &
Pages 1826-1846 | Received 07 Sep 2021, Accepted 19 Dec 2021, Published online: 01 Apr 2022

References

  • Ahmad, R., & Kamaruddin, S. (2012). An overview of time-based and condition-based maintenance in industrial application. Computers & Industrial Engineering, 63(1), 135–149.
  • Amaireh, L. K., & Al-Tamimi, A. (2020). Optimum configuration of CFRP composites for strengthening of reinforced concrete beams considering the contact constraint. Procedia Manufacturing, 44, 350–357.
  • Ansari, F., Glawar, R., & Nemeth, T. (2019). PriMa: A prescriptive maintenance model for cyber-physical production systems. International Journal of Computer Integrated Manufacturing, 32(4–5), 482–503.
  • Aqra, F., & Ayyad, A. (2011). Surface energies of metals in both liquid and solid states. Applied Surface Science, 257(15), 6372–6379.
  • Božić, Ž., Schmauder, S., Mlikota, M., & Hummel, M. (2014). Multiscale fatigue crack growth modelling for welded stiffened panels. Fatigue & Fracture of Engineering Materials & Structures, 37(9), 1043–1054.
  • BSI. (2005). BS 7910:2005: Guide to methods for assessing the acceptability of flaws in metallic structures. London: British Standards Institution.
  • Catbas, F. N., Susoy, M., & Frangopol, D. M. (2008). Structural health monitoring and reliability estimation: Long span truss bridge application with environmental monitoring data. Engineering Structures, 30(9), 2347–2359.
  • CEN. (2003). EN 1991-2: EUROCODE 1: Actions on structures - Part 2: Traffic loads on bridges. London: British Standards Institution.
  • Chung, H.-Y., Manuel, L., & Frank, K. H. (2006). Optimal inspection scheduling of steel bridges using nondestructive testing techniques. Journal of Bridge Engineering, 11(3), 305–319.
  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.
  • Dorafshan, S., Thomas, R. J., & Maguire, M. (2018). Fatigue crack detection using unmanned aerial systems in fracture critical inspection of steel bridges. Journal of Bridge Engineering, 23(10), 04018078.
  • Ehlen, M. A. (1999). Life-cycle costs of fiber-reinforced-polymer bridge decks. Journal of Materials in Civil Engineering, 11(3), 224–230.
  • Erdogan, F., & Sih, G. C. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 85(4), 519–525.
  • Errandonea, I., Beltrán, S., & Arrizabalaga, S. (2020). Digital Twin for maintenance: A literature review. Computers in Industry, 123, 103316.
  • Farhey, D. N. (2005). Bridge instrumentation and monitoring for structural diagnostics. Structural Health Monitoring, 4(4), 301–318.
  • Fine, M. E., & Bhat, S. P. (2007). A model of fatigue crack nucleation in single crystal iron and copper. Materials Science and Engineering: A, 468–470(SPEC. ISS), 64–69.
  • Fisher, J. W., & Barsom, J. M. (2016). Evaluation of cracking in the rib-to-deck welds of the Bronx–Whitestone bridge. Journal of Bridge Engineering, 21(3), 04015065.
  • Fisher, J. W., & Roy, S. (2011). Fatigue of steel bridge infrastructure. Structure and Infrastructure Engineering, 7(7–8), 457–475.
  • Frangopol, D. M., Dong, Y., & Sabatino, S. (2017). Bridge life-cycle performance and cost: Analysis, prediction, optimisation and decision-making. Structure and Infrastructure Engineering, 13(10), 1239–1257.
  • Frangopol, D. M., Lin, K.-Y., & Estes, A. C. (1998). Life‐cycle cost design of deteriorating structures. Journal of Structural Engineering, 124(11), 1368–1369.
  • Frangopol, D. M., Strauss, A., & Kim, S. (2008a). Bridge reliability assessment based on monitoring. Journal of Bridge Engineering, 13(3), 258–270.
  • Frangopol, D. M., Strauss, A., & Kim, S. (2008b). Use of monitoring extreme data for the performance prediction of structures: General approach. Engineering Structures, 30(12), 3644–3653.
  • Glaessgen, E., & Stargel, D. (2012, April). The Digital Twin paradigm for future NASA and U.S. air force vehicles. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (pp. 1–14). Reston, VA: American Institute of Aeronautics and Astronautics.
  • Huang, Y., Zhang, Q., Bao, Y., & Bu, Y. (2019). Fatigue assessment of longitudinal rib-to-crossbeam welded joints in orthotropic steel bridge decks. Journal of Constructional Steel Research, 159, 53–66.
  • Jiang, F., Ding, Y., Song, Y., Geng, F., & Wang, Z. (2021a). An architecture of lifecycle fatigue management of steel bridges driven by Digital Twin. Structural Monitoring and Maintenance, 8(2), 187–201.
  • Jiang, F., Ding, Y., Song, Y., Geng, F., & Wang, Z. (2021b). Digital Twin-driven framework for fatigue life prediction of steel bridges using a probabilistic multiscale model: Application to segmental orthotropic steel deck specimen. Engineering Structures, 241, 112461.
  • Kim, S., & Frangopol, D. M. (2011a). Optimum inspection planning for minimizing fatigue damage detection delay of ship hull structures. International Journal of Fatigue, 33(3), 448–459.
  • Kim, S., & Frangopol, D. M. (2011b). Probabilistic bicriterion optimum inspection/monitoring planning: Applications to naval ships and bridges under fatigue. Structure and Infrastructure Engineering, 8(10), 912–927.
  • Kim, S., & Frangopol, D. M. (2017). Efficient multi-objective optimisation of probabilistic service life management. Structure and Infrastructure Engineering, 13(1), 147–159.
  • Kim, S., & Frangopol, D. M. (2018). Decision making for probabilistic fatigue inspection planning based on multi-objective optimization. International Journal of Fatigue, 111, 356–368.
  • Leander, J., & Al-Emrani, M. (2016). Reliability-based fatigue assessment of steel bridges using LEFM – A sensitivity analysis. International Journal of Fatigue, 93, 82–91.
  • Li, L., Shen, L., & Proust, G. (2015). Fatigue crack initiation life prediction for aluminium alloy 7075 using crystal plasticity finite element simulations. Mechanics of Materials, 81, 84–93.
  • Liu, H., Al-Mahaidi, R., & Zhao, X.-L. (2009). Experimental study of fatigue crack growth behaviour in adhesively reinforced steel structures. Composite Structures, 90(1), 12–20.
  • Liu, M., Frangopol, D. M., & Kim, S. (2009). Bridge safety evaluation based on monitored live load effects. Journal of Bridge Engineering, 14(4), 257–269.
  • Liu, J., Guo, T., Feng, D., & Liu, Z. (2018). Fatigue performance of rib-to-deck joints strengthened with FRP angles. Journal of Bridge Engineering, 23(9), 04018060.
  • Mabkhot, M., Al-Ahmari, A., Salah, B., & Alkhalefah, H. (2018). Requirements of the smart factory system: A survey and perspective. Machines, 6(2), 23.
  • Okasha, N. M., & Frangopol, D. M. (2010). Integration of structural health monitoring in a system performance based life-cycle bridge management framework. Structure and Infrastructure Engineering, 8(11), 999–1016.
  • Okasha, N. M., Frangopol, D. M., & Decò, A. (2010). Integration of structural health monitoring in life-cycle performance assessment of ship structures under uncertainty. Marine Structures, 23(3), 303–321.
  • Peng, J., Yang, Y., Bian, H., Zhang, J., & Wang, L. (2022). Optimisation of maintenance strategy of deteriorating bridges considering sustainability criteria. Structure and Infrastructure Engineering, 18(3), 395–411.
  • Schönecker, S., Li, X., Johansson, B., Kwon, S. K., & Vitos, L. (2015). Thermal surface free energy and stress of iron. Scientific Reports, 5(1), 14860.
  • Soliman, M., & Frangopol, D. M. (2014). Life-cycle management of fatigue-sensitive structures integrating inspection information. Journal of Infrastructure Systems, 20(2), 04014001.
  • Soliman, M., Frangopol, D. M., & Mondoro, A. (2016). A probabilistic approach for optimizing inspection, monitoring, and maintenance actions against fatigue of critical ship details. Structural Safety, 60, 91–101.
  • Teng, J. G., Yu, T., & Fernando, D. (2012). Strengthening of steel structures with fiber-reinforced polymer composites. Journal of Constructional Steel Research, 78, 131–143.
  • Vafaei, N., Ribeiro, R. A., & Camarinha-Matos, L. M. (2016). Normalization techniques for multi-criteria decision making: Analytical hierarchy process case study. In L. M. Camarinha-Matos, A. J. Falcão, N. Vafaei, & S. Najdi (Eds.), Technological innovation for cyber-physical systems (pp. 261–269).Cham: Springer.
  • Wang, Y., Fu, Z., Ge, H., Ji, B., & Hayakawa, N. (2019). Cracking reasons and features of fatigue details in the diaphragm of curved steel box girder. Engineering Structures, 201, 109767.
  • Wang, B., Nagy, W., De Backer, H., & Chen, A. (2019). Fatigue process of rib-to-deck welded joints of orthotropic steel decks. Theoretical and Applied Fracture Mechanics, 101, 113–126.
  • Wu, C., Zhao, X. L., Al-Mahaidi, R., Emdad, M. R., & Duan, W. H. (2013). Fatigue tests on steel plates with longitudinal weld attachment strengthened by ultra high modulus carbon fibre reinforced polymer plate. Fatigue & Fracture of Engineering Materials & Structures, 36(10), 1027–1038.
  • Wu, C., Zhao, X., Al-Mahaidi, R., Emdad, M. R., & Duan, W. (2012). Fatigue tests of cracked steel plates strengthened with UHM CFRP plates. Advances in Structural Engineering, 15(10), 1801–1815.
  • Yang, D. Y., & Frangopol, D. M. (2018). Probabilistic optimization framework for inspection/repair planning of fatigue-critical details using dynamic Bayesian networks. Computers & Structures, 198, 40–50.
  • Yang, D. Y., Frangopol, D. M., & Teng, J.-G. (2019). Probabilistic life-cycle optimization of durability-enhancing maintenance actions: Application to FRP strengthening planning. Engineering Structures, 188, 340–349.
  • Yeratapally, S. R., Leser, P. E., Hochhalter, J. D., Leser, W. P., & Ruggles, T. J. (2020). A digital twin feasibility study (Part I): Non-deterministic predictions of fatigue life in aluminum alloy 7075-T651 using a microstructure-based multi-scale model. Engineering Fracture Mechanics, 228, 106888.
  • Yu, Q. Q., Chen, T., Gu, X. L., Zhao, X. L., & Xiao, Z. G. (2013). Fatigue behaviour of CFRP strengthened steel plates with different degrees of damage. Thin-Walled Structures, 69, 10–17.
  • Zhang, K.-S., Ju, J. W., Li, Z., Bai, Y.-L., & Brocks, W. (2015). Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity. Mechanics of Materials, 85, 16–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.