3,726
Views
6
CrossRef citations to date
0
Altmetric
Articles

Monitoring structural responses during load testing of reinforced concrete bridges: a review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1558-1580 | Received 31 Aug 2021, Accepted 25 Feb 2022, Published online: 18 Apr 2022

References

  • A bedin, M., De Caso Y Basalo, F. J., Kiani, N., Mehrabi, A. B., & Nanni, A. (2022). Bridge load testing and damage evaluation using model updating method. Engineering Structures, 252, 113648. doi:10.1016/j.engstruct.2021.113648
  • ACI Committee 342. (2016). Report on flexural live load distribution methods for evaluating existing bridges. Farmington Hills, MI: American Concrete Institute.
  • ACI Committee 437. (2013). Code requirements for load testing of existing concrete structures (ACI437.2M-13) and commentary. Farmington Hills, MI: American Concrete Institute.
  • ACI Committee 444. (2021). Structural health monitoring technologies for concrete structures – report (PRC-444.2-21). Farmington Hills, MI.: American Concrete Institute.
  • Aguilar, C. V., Jáuregui, D. V., Newtson, C. M., Weldon, B. D., & Cortez, T. M. (2015). Load rating a prestressed concrete double t-beam bridge without plans by field testing. Transportation Research Record: Journal of the Transportation Research Board, 2522(1), 90–99. doi:10.3141/2522-09
  • Aktan, A. E., Catbas, F. N., Grimmelsman, K. A., & Pervizpour, M. (2003). Development of a model health monitoring guide for major bridges. Federal Highway Administration Research and Development (FHWA).
  • Aktan, A. E., Zwick, M., Miller, R. A., & Shahrooz, B. M. (1992). Nondestructive and destructive testing of decommissioned reinforced concrete slab highway bridge and associated analytical studiesed. ^eds.
  • Alampalli, S., Frangopol, D. M., Grimson, J., Kosnik, D., Halling, M., Lantsoght, E. O., … Zhou, Y. E. (2019). Primer on bridge load testing. Transportation Research Board (TRB) Washington, DC, USA.
  • Alipour, M., Shariati, A., Schumacher, T., Harris, D. K., & Riley, C. J. (2019a). Digital image and video-based measurements. In Lantsoght, E. (Ed.), Load testing of bridges: Proof load testing and the future of load testing (pp. 143–262). London, UK: CRC Press.
  • Alipour, M., Washlesky, S. J., & Harris, D. K. (2019b). Field deployment and laboratory evaluation of 2d digital image correlation for deflection sensing in complex environments. Journal of Bridge Engineering, 24(4), 04019010. doi:10.1061/(ASCE)BE.1943-5592.0001363
  • Al-Mahaidi, R., Taplin, G., & Giufre, A. (2000). Load distribution and shear strength evaluation of an old concrete t-beam bridge. Transportation Research Record: Journal of the Transportation Research Board, 1696(1), 52–62. doi:10.3141/1696-08
  • AASHTO. (2011). The manual for bridge evaluation. Washington, D.C: AASHTO.
  • Anay, R., Cortez, T. M., Jáuregui, D. V., Elbatanouny, M. K., & Ziehl, P. (2016b). On-site acoustic-emission monitoring for assessment of a prestressed concrete double-tee-beam bridge without plans. Journal of Performance of Constructed Facilities, 30(4), 04015062. doi:10.1061/(ASCE)CF.1943-5509.0000810
  • Arockiasamy, M., & Amer, A. (1998). Load distribution on highway bridges based on field test data: Phase iii. Report for Florida Department of Transportation.
  • Barrias, A., Rodriguez, G., Casas, J. R., & Villalba, S. (2018). Application of distributed optical fiber sensors for the health monitoring of two real structures in Barcelona. Structure and Infrastructure Engineering, 14(7), 967–985. doi:10.1080/15732479.2018.1438479
  • Bridge Diagnostics. (2018). Operations manual ST350-strain transducer.
  • Brooks, J. (2014). Concrete and masonry movements. Oxford, UK: Butterworth-Heinemann.
  • Caglayan, B., Ozakgul, K., & Tezer, O. (2012). Assessment of a concrete arch bridge using static and dynamic load tests. Structural Engineering and Mechanics, 41(1), 83–94. doi:10.12989/sem.2012.41.1.083
  • Campana, S., Fernández Ruiz, M., Anastasi, A., & Muttoni, A. (2013). Analysis of shear-transfer actions on one-way RC members based on measured cracking pattern and failure kinematics. Magazine of Concrete Research, 65(6), 386–404. doi:10.1680/macr.12.00142
  • Campbell Scientific Inc. (2020). Granite VWire 305 8-channel dynamic-wire analyzer.
  • Casas, J. R., Barrias, A., Rodriguez, G. G., & Villalba, S. (2019). Fiber optics for load testing. In Lantsoght, E. (Ed.), Load testing of bridges: Proof load testing and the future of load testing (pp. 143–262). London, UK: CRC Press.
  • Catbas, N., Ciloglu, S. K., & Aktan, A. (2005). Strategies for load rating of infrastructure populations: A case study on t-beam bridges. Structure and Infrastructure Engineering, 1(3), 221–238. doi:10.1080/15732470500031008
  • Cavagnis, F., Fernández Ruiz, M., & Muttoni, A. (2018). An analysis of the shear-transfer actions in reinforced concrete members without transverse reinforcement based on refined experimental measurements. Structural Concrete, 19(1), 49–64. doi:10.1002/suco.201700145
  • Cazeca, M. J., Mead, J., Chen, J., & Nagarajan, R. (2013). Passive wireless displacement sensor based on RFID technology. Sensors and Actuators A: Physical, 190, 197–202. doi:10.1016/j.sna.2012.11.007
  • Chen, S.-E. (2012). Laser scanning technology for bridge monitoring. In Rodriguez, J.A.M (Ed.), Laser scanner technology (pp. 71–92). Rijeka: InTech.
  • Choi, H., Palacios, G., Popovics, J. S., & Chao, S.-H. (2018). Monitoring damage in concrete columns using ultrasonic tomography. ACI Structural Journal, 115(2), 545–558. doi:10.14359/51701117
  • Christensen, C. O., Schmidt, J. W., Halding, P. S., Kapoor, M., & Goltermann, P. (2021). Digital image correlation for evaluation of cracks in reinforced concrete bridge slabs. Infrastructures, 6(7), 99. doi:10.3390/infrastructures6070099
  • Colombani, I. A., & Andrawes, B. (2022). Comparison of load rating of reinforced concrete slab bridge using analytical and field testing approaches. Innovative Infrastructure Solutions, 7(1), 1–12. doi:10.1007/s41062-021-00677-9
  • Deutscher Ausschuss Für Stahlbeton. (2000). Datstb-guideline: Load tests on concrete structures (in german) (DAfStb-richtlinie: Belastungsversuche an betonbauwerken). Berlin: Deutscher Ausschuss fur Stahlbeton.
  • Diaz Arancibia, M., & Okumus, P. (2018). Load testing of highly skewed concrete bridges. ACI Symposium Publication, 323.
  • Du, C., Yang, Y., & Hordijk, D. (2018). Experimental investigation on crack detection using embedded smart aggregate. IALCCE 2018. Ghent.
  • Ettouney, M., & Alampalli, S. (2012). Infrastructure health in civil engineering. Theory and components. Boca Raton, FL: CRC Press.
  • Faassen, L. (2021). FBG optical fibers in proof loading of concrete slab bridges (Master Thesis). Delft University of Technology.
  • Feng, M. Q., Fukuda, Y., Feng, D., & Mizuta, M. (2015). Nontarget vision sensor for remote measurement of bridge dynamic response. Journal of Bridge Engineering, 20(12), 04015023. doi:10.1061/(ASCE)BE.1943-5592.0000747
  • Fennis, S., & Hordijk, D. A. (2014). Proof load halvemaans bridge in alkamar (in dutch) proefbelasting halvemaansbrug alkmaar Stevin Report (25.5-14-05), 72.
  • Fennis, S., Hordijk, D. A., Yuguang, Y., & Koekkoek, R. T. (2015). Assessment of viaduct vlijmen oost by proof loading. Stevin Report (25.5-15-10), 126.
  • Ferdinand, P. (2014). The evolution of optical fiber sensors technologies during the 35 last years and their applications in structural health monitoring. EWSHM – 7th European Workshop on Structural Health Monitoring, Nantes, France.
  • Gehrlein, S., & Fischer, O. (2018). Results of the full-scale shear capacity tests at the Hammelburg bridge with special attention on the fibre-optical measurement and a comparison with current engineering models.
  • Gentile, C. (2011). Vibration measurement by radar techniques.
  • Gentile, C., & Bernardini, G. (2008). Output-only modal identification of a reinforced concrete bridge from radar-based measurements. NDT & E International, 41(7), 544–553. doi:10.1016/j.ndteint.2008.04.005
  • GeokonInc. (2014). Instruction manual model 4000 (and 4050) vibrating wire strain gauge.
  • Grosse, C., & Ohtsu, M. (2008). Acoustic emission testing: Basics for research applications in civil engineering. Berlin: Springer.
  • Gupta, B. D. (2006). Fiber optic sensors: Principles and applications: Pitam Pura, New Delhi: New India Publishing Agency.
  • Hag-Elsafi, O., & Kunnin, J. (2006). Load testing for bridge rating: Dean’s mill road over Hannacrois creek. Albany, NY: Transportation Research and Development Bureau, New York State Department of Transportation.
  • Haitjema, H. (2020). The calibration of displacement sensors. Sensors (Basel, Switzerland), 20(3), 584. doi:10.3390/s20030584
  • Halding, P. S., Schmidt, J. W., Jensen, T. W., & Henriksen, A. H. (2017). Structural response of full-scale concrete bridges subjected to high load magnitudes. Fourth Conference on smart monitoring, assessment and rehabilitation of civil structures. Zürich, Switzerland.
  • Hernandez, E., & Myers, J. (2015). In-situ field test and service response of Missouri bridge A7957.
  • Hernandez, E., & Myers, J. (2018). Strength evaluation of prestressed concrete bridges by dynamic load testing.
  • Huber, P., Huber, T., & Kollegger, J. (2016). Investigation of the shear behavior of RC beams on the basis of measured crack kinematics. Engineering Structures, 113, 41–58. doi:10.1016/j.engstruct.2016.01.025
  • IDS Ingegneria Dei Sistemi. (2014). Ibis-fs. An innovative sensor for remote monitoring of structural movements and deformations.
  • Jáuregui, D. V., White, K. R., Woodward, C. B., & Leitch, K. R. (2003). Noncontact photogrammetric measurement of vertical bridge deflection. Journal of Bridge Engineering, 8(4), 212–222. doi:10.1061/(ASCE)1084-0702(2003)8:4(212)
  • Jeffrey, A., Breña, S. F., & Civjan, S. A. (2009). Evaluation of bridge performance and rating through nondestructive load testing. Report for Vermont Agency of Transportation One National Life Drive.
  • Jones, B. P. (2011). Reevaluation of the AASHTO effective width equation in concrete slab bridges in Delaware (Master degree). University of Delaware.
  • Juntunen, D. A., & Isola, M. C. (1995). Proof load test of R01 of 61131M-37 over CSX railroad, South of Bailey, Michigan. Michigan Department of Transportation 58.
  • Kalansuriya, P., Bhattacharyya, R., & Sarma, S. (2013). Rfid tag antenna-based sensing for pervasive surface crack detection. IEEE Sensors Journal, 13(5), 1564–1570. doi:10.1109/JSEN.2013.2240155
  • Kevinly, C., Zhang, F., Yang, Y., Draganov, D., & Weemstra, C. (2021). A study on monitoring multi-scale concrete members with coda-wave interferometry using embedded transducers.
  • Khuc, T., & Catbas, F. N. (2017). Computer vision-based displacement and vibration monitoring without using physical target on structures. Structure and Infrastructure Engineering, 13(4), 505–516. doi:10.1080/15732479.2016.1164729
  • Koekkoek, R. T., Lantsoght, E., & Hordijk, D. A. (2015). Proof loading of the asr-affected viaduct zijlweg in highway a59. Stevin report (25.5-15-08), 189.
  • Koekkoek, R. T., Lantsoght, E., Yuguang, Y., & Hordijk, D. A. (2016). Assessment of viaduct de beek by proof loading. Stevin Report (25.5-16-01), 125.
  • Kundu, T., Nonis, C., Niezrecki, C., Yu, T.-Y., Ahmed, S., Su, C.-F., & Schmidt, T. (2013). Structural health monitoring of bridges using digital image correlation. Health Monitoring of Structural and Biological Systems 2013. Oakland, CA: SIE.
  • Küntz, M., Jolin, M., Bastien, J., Perez, F., & Hild, F. (2006). Digital image correlation analysis of crack behavior in a reinforced concrete beam during a load test. Canadian Journal of Civil Engineering, 33(11), 1418–1425. doi:10.1139/l06-106
  • Lachat, E., Landes, T., & Grussenmeyer, P. (2017). Investigation of a combined surveying and scanning device: The trimble sx10 scanning total station. Sensors (Basel), 17(4), 730. doi:10.3390/s17040730
  • Lantsoght, E. (2019). Load testing of bridges: Proof load testing and the future of load testing. In Frangopol, D.M. (Ed.), Structures and infrastructures. London, UK: CRC Press.
  • Lantsoght, E., Van Der Veen, C., & Hordijk, D. A. (2016). Proposed stop criteria for proof load testing of concrete bridges and verification. IALCCE. Ghent, Belgium.
  • Lantsoght, E., Van Der Veen, C., De Boer, A., & Hordijk, D. A. (2017a). Proof load testing of reinforced concrete slab bridges in the Netherlands. Structural Concrete, 18(4), 597–606. doi:10.1002/suco.201600171
  • Lantsoght, E., Van Der Veen, C., De Boer, A., & Hordijk, D. A. (2017b). State-of-the-art on load testing of concrete bridges. Engineering Structures, 150, 231–241. doi:10.1016/j.engstruct.2017.07.050
  • Lantsoght, E., Yang, Y., Van Der Veen, C., Hordijk, D. A., & De Boer, A. (2019). Stop criteria for flexure for proof load testing of reinforced concrete structures. Frontiers in Built Environment, 5, 47. doi:10.3389/fbuil.2019.00047
  • Liu, W. (2010). Terrestrial lidar-based bridge evaluation (PhD). Universtity of North Carolina.
  • Lõhmus, H., Ellmann, A., Märdla, S., & Idnurm, S. (2018). Terrestrial laser scanning for the monitoring of bridge load tests – Two case studies. Survey Review, 50(360), 270–284. doi:10.1080/00396265.2016.1266117
  • Lydon, D., Lydon, M., Taylor, S., Del Rincon, J. M., Hester, D., & Brownjohn, J. (2019). Development and field testing of a vision-based displacement system using a low cost wireless action camera. Mechanical Systems and Signal Processing, 121, 343–358. doi:10.1016/j.ymssp.2018.11.015
  • Mayer, L., Yanev, B. S., Olson, L. D., & Smyth, A. W. (2010). Monitoring of Manhattan bridge for vertical and torsional performance with gps and interferometric radar systemsed. ^eds. Transportation Research Board 89th Annual Meeting.
  • Mccormick, N., Waterfall, P., & Owens, A. (2014). Optical imaging for low-cost structural measurements. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 167(1), 33–42. doi:10.1680/bren.11.00055
  • Merkle, W. J., & Myers, J. (2006). Load testing and load distribution response of Missouri bridges retrofitted with various frp systems using a non-contact optical measurement system. Transportation Research Board, 85th Annual Meeting January 22nd–26th Citeseer.
  • Merkle, W., & Myers, J. J. (2004). Use of the total station for serviciability monitoring of bridges with limited access in Missouri, USA. USA: Center of Infrastructure Engineering Studies (CIES).
  • Miccinesi, L., Beni, A., & Pieraccini, M. (2021). Multi-monostatic interferometric radar for bridge monitoring. Electronics, 10(3), 247. doi:10.3390/electronics10030247
  • Michel, C., & Keller, S. (2021). Advancing ground-based radar processing for bridge infrastructure monitoring. Sensors, 21(6), 2172. doi:10.3390/s21062172
  • Modares, M., & Waksmanski, N. (2013). Overview of structural health monitoring for steel bridges. Practice Periodical on Structural Design and Construction, 18(3), 187–191. doi:10.1061/(ASCE)SC.1943-5576.0000154
  • MTI Instruments Inc. (2014). An introduction to laser triangulation sensors [online]. https://www.azosensors.com/article.aspx?ArticleID=523.
  • Murienne, B. J., & Nguyen, T. D. (2016). A comparison of 2d and 3d digital image correlation for a membrane under inflation. Optics and Lasers in Engineering, 77, 92–99. doi:10.1016/j.optlaseng.2015.07.013
  • Murray, C., Hoag, A., Hoult, N. A., & Take, W. A. (2015). Field monitoring of a bridge using digital image correlation. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 168(1), 3–12. doi:10.1680/bren.13.00024
  • National Instruments. (1998). Strain gauge measurement – A tutorial, Application Note 078 National Instruments.
  • Olaszek, P., Chen, A., Frangopol, D., & Ruan, X. (2014). Deflection monitoring system making use of inclinometers and cubic spline curves. Bridge Maintenance, Safety, Management and Life Extension; CRC Press: London, UK, 2305–2312
  • Olaszek, P., Łagoda, M., & Casas, J. R. (2014). Diagnostic load testing and assessment of existing bridges: Examples of application. Structure and Infrastructure Engineering, 10(6), 834–842. doi:10.1080/15732479.2013.772212
  • Olaszek, P., Świercz, A., & Boscagli, F. (2021). The integration of two interferometric radars for measuring dynamic displacement of bridges. Remote Sensing, 13(18), 3668. doi:10.3390/rs13183668
  • Olaszek, P., Swit, G., & Casas, J. (2010). Proof load testing supported by acoustic emission: An example of applicationed. ^eds. International Conference on Bridge Maintenance, Safety and Management CRC Press, 472–479.
  • Omega Engineering Inc. (2020). Load cells & force sensors.
  • Ozbey, B., Erturk, V. B., Demir, H. V., Altintas, A., & Kurc, O. (2016). A wireless passive sensing system for displacement/strain measurement in reinforced concrete members. Sensors, 16(4), 496. doi:10.3390/s16040496
  • Pan, B., Qian, K., Xie, H., & Asundi, A. (2009). Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Measurement Science and Technology, 20(6), 062001. doi:10.1088/0957-0233/20/6/062001
  • Pan, B., Xie, H., Guo, Z., & Hua, T. (2007). Full-field strain measurement using a two-dimensional digital differentiator in digital image correlation. Optical Engineering, 46(3), 033601. doi:10.1117/1.2714926
  • PCB. (2011). Piezotronics tech support documents [online]. http://www.pcb.com/techsupport/tech_indaccel.
  • Pieraccini, M. (2013). Monitoring of civil infrastructures by interferometric radar: A review. TheScientificWorldJournal, 2013, 786961. doi:10.1155/2013/786961
  • Pieraccini, M., Fratini, M., Parrini, F., Atzeni, C., & Bartoli, G. (2008). Interferometric radar vs. Accelerometer for dynamic monitoring of large structures: An experimental comparison. NDT & E International, 41(4), 258–264. doi:10.1016/j.ndteint.2007.11.002
  • Rion (2014)., Specifications single- axis inclinometer.
  • Sanayei, M., Reiff, A. J., Brenner, B. R., & Imbaro, G. R. (2016). Load rating of a fully instrumented bridge: Comparison of LRFR approaches. Journal of Performance of Constructed Facilities, 30(2), 04015019. doi:10.1061/(ASCE)CF.1943-5509.0000752
  • Saraf, V. K. (1998). Evaluation of existing rc slab bridges. Journal of Performance of Constructed Facilities, 12(1), 20–24. doi:10.1061/(ASCE)0887-3828(1998)12:1(20)
  • Sas, G., Blanksvärd, T., Enochsson, O., Täljsten, B., & Elfgren, L. (2012). Photographic strain monitoring during full-scale failure testing of örnsköldsvik bridge. Structural Health Monitoring, 11(4), 489–498. doi:10.1177/1475921712438568
  • Schacht, G., Bolle, G., & Marx, S. (2015). Experimental in-situ investigation of the shear bearing capacity of pre-stressed hollow core slabs. Concrete Repair, Rehabilitation and Retrofitting IV (pp. 851–859). London, UK: CRC Press.
  • Schechinger, B., & Vogel, T. (2007). Acoustic emission for monitoring a reinforced concrete beam subject to four-point-bending. Construction and Building Materials, 21(3), 483–490. doi:10.1016/j.conbuildmat.2006.04.003
  • Schmidt, J. W., Halding, P. S., Jensenm, T. W., & Engelund, S. (2018). High magnitude loading of concrete bridges. ACI Symposium Publication, 323.
  • Schmidt, J. W., Hansen, S. G., Barbosa, R. A., & Henriksen, A. (2014). Novel shear capacity testing of asr damaged full scale concrete bridge. Engineering Structures, 79, 365–374. doi:10.1016/j.engstruct.2014.08.027
  • Schumacher, T., & Shariati, A. (2013). Monitoring of structures and mechanical systems using virtual visual sensors for video analysis: Fundamental concept and proof of feasibility. Sensors, 13(12), 16551–16564. doi:10.3390/s131216551
  • Shahawy, M. A. (1995). Nondestructive strength evaluation of Florida bridges: Oakland, CA: SPIE.
  • Shariati, A., Schumacher, T., & Ramanna, N. (2015). Eulerian-based virtual visual sensors to detect natural frequencies of structures. Journal of Civil Structural Health Monitoring, 5(4), 457–468. doi:10.1007/s13349-015-0128-5
  • Shiotani, T., Aggelis Dimitrios, G., & Makishima, O. (2009). Global monitoring of large concrete structures using acoustic emission and ultrasonic techniques: Case study. Journal of Bridge Engineering, 14(3), 188–192. doi:10.1061/(ASCE)1084-0702(2009)14:3(188)
  • Sofi, M., Lumantarna, E., Mendis, P. A., Duffield, C., & Rajabifard, A. (2017). Assessment of a pedestrian bridge dynamics using interferometric radar system ibis-fs. Procedia Engineering, 188, 33–40. doi:10.1016/j.proeng.2017.04.454
  • Song, G., Gu, H., & Mo, Y.-L. (2008). Smart aggregates: Multi-functional sensors for concrete structures—A tutorial and a review. Smart Materials and Structures, 17(3), 033001. doi:10.1088/0964-1726/17/3/033001
  • Song, Y.-Z., Bowen, C. R., Kim, A. H., Nassehi, A., Padget, J., & Gathercole, N. (2014). Virtual visual sensors and their application in structural health monitoring. Structural Health Monitoring, 13(3), 251–264. doi:10.1177/1475921714522841
  • Strangfeld, C., Hindersmann, I., & Niederleithinger, E. (2021). Smart bridge: The durabast test bridge equipped with rfid-based sensors. Bridge maintenance, safety, management, life-cycle sustainability and innovations (pp. 2353–2358). Sapporo, Japan: CRC Press.
  • Taylor, E. S., Barry, R., Cleland, J. D., & Kirkpatrick, J. (2007). Serviceability of bridge deck slabs with arching action. ACI Structural Journal, 104(1), 39.
  • Tian, L., Zhao, J., Pan, B., & Wang, Z. (2021). Full-field bridge deflection monitoring with off-axis digital image correlation. Sensors, 21(15), 5058. doi:10.3390/s21155058
  • Trias, A., Yu, Y., Gong, J., & Moon, F. L. (2021). Supporting quantitative structural assessment of highway bridges through the use of lidar scanning. Structure and Infrastructure Engineering, 1–12. doi:10.1080/15732479.2021.1880446
  • Van Steen, C., Verstrynge, E., Wevers, M., & Vandewalle, L. (2019). Assessing the bond behaviour of corroded smooth and ribbed rebars with acoustic emission monitoring. Cement and Concrete Research, 120, 176–186. doi:10.1016/j.cemconres.2019.03.023
  • Velázquez, B. M., Yura, J. A., Frank, K. H., Kreger, M. E., & Wood, S. L. (2000). Diagnostic load tests of a reinforced concrete pan-girder bridge (p. 121). Austin, TX, USA: The University of Texas at Austin.
  • Wang, X., Taylor, P., Hosteng, T., & Phares, B. (2016). Evaluation and testing of a lightweight fine aggregate concrete bridge deck in Buchanan county, Iowa.
  • Watson, D. (2019). Lidar assessment to monitor bridge response under live and dead loads (Master). University of Nebraska.
  • Wilson, J. S. (2004). Sensor technology handbook. Oxford: Elsevier.
  • Yang, Y., Hordijk, D., & De Boer, A. (2016). Acoustic emission measurement in the proof loading of an existing bridge affected by asred. ^eds. 5th International Symposium for Life-Cycle Civil Engineering.
  • Yarnold, M., Golecki, T., & Weidner, J. (2018). Identification of composite action through truck load testing. Frontiers in Built Environment, 4, 74. doi:10.3389/fbuil.2018.00074
  • Yoneyama, S., & Ueda, H. (2012). Bridge deflection measurement using digital image correlation with camera movement correction. Materials Transactions, 53(2), 285–290. doi:10.2320/matertrans.I-M2011843
  • Zeiske, K. (2004). Surveying made easy. Heerbrugg, Switzerland: Leica Geosystems.
  • Zhang, F., Zarate Garnica, G. I., Yang, Y., Lantsoght, E., & Sliedrecht, H. (2020). Monitoring shear behavior of prestressed concrete bridge girders using acoustic emission and digital image correlation. Sensors (Basel, Switzerland), 20(19), 5622. doi:10.3390/s20195622
  • Zheng, J., Li, Q., Mao, R., Wang, Y., & Zhou, Z. (2020). Bridge vibration virtual sensor based on eulerian video magnification and gray mean difference. IOP Conference Series: Materials Science and Engineering, 964(1), 012026. doi:10.1088/1757-899X/964/1/012026