Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 20, 2024 - Issue 1
384
Views
2
CrossRef citations to date
0
Altmetric
ARTICLE

Reliability-based vulnerability analysis of bridge pier subjected to debris flow impact

, , , &
Pages 1-12 | Received 27 Jul 2021, Accepted 23 Dec 2021, Published online: 11 May 2022

References

  • Abedini, M., & Zhang, C. (2020). Performance assessment of concrete and steel material models in LS-DYNA for enhanced numerical simulation, a state of the art review. Archives of Computational Methods in Engineering, 28(6), 2921–2942. doi:10.1007/s11831-020-09483-5
  • Ahmadipur, A., & Qiu, T. (2018). Impact force to a rigid obstruction from a granular mass sliding down a smooth incline. Acta Geotechnica, 13(6), 1433–1450. doi:10.1007/s11440-018-0727-5
  • Blackwelder, E. (1928). Mud flows as a geologic agent in semi-aird mountains. Geological Society of America Bulletin, 39(2), 465–487. doi:10.1130/GSAB-39-465
  • Canelli, L., Ferrero, A. M., Migliazza, M., & Segalini, A. (2012). Debris flow risk mitigation by the means of rigid and flexible barriers–experimental tests and impact analysis. Natural Hazards and Earth System Sciences, 12(5), 1693–1699. doi:10.5194/nhess-12-1693-2012
  • CIMHE, CAS (1989). Research and prevention of debris flow. Chengdu, China: Sichuan Publishing House of Science Technology.
  • Fei, X. J., & Shu, A. P. (2004). Movement mechanism and disaster control for debris flow. Beijing, China: Tsinghua University Press.
  • GB 50010-2010. (2015). The code for design of concrete structures. Ministry of Housing and Urban-Rural Development of the People's Republic of China.
  • Gu, X. (2017). Study on damage and protective measures of bridge piers under rockfall impact (Doctoral dissertation). Southwest Jiaotong University. Wanfang Database. https://d.wanfangdata.com.cn/thesis/Y3382974.
  • He, S., Liu, W., & Li, X. P. (2016). Prediction of impact force of debris flows based on distribution and size of particles. Environmental Earth Sciences, 75(4), 298. doi:10.1007/s12665-015-5180-2
  • Hu, G. S., Chen, N. S., Deng, M. F., & Lu, Y. (2011). Analysis of the characteristics of impact force of massive stones of the Sanyanyu Debris Flow Gully in Zhouqu, Gansu Province. Earth and Environment, 2011(4), 478–484. doi:10.14050/j.cnki.1672-9250.2011.04.006478
  • Huang, Y. H. (2017). Random distribution characteristics and calculation of coarse-particles impact force in debris flow (Master's thesis). University of Chinese Academy of Sciences. University of Chinese Academy of Sciences e-Repository. http://ir.imde.ac.cn/handle/131551/24612.
  • Iverson, R. M., Logan, M., & Denlinger, R. P. (2004). Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests. Journal of Geophysical Research: Earth Surface, 109(F1), 1–16. doi:10.1029/2003JF000084
  • Johnson, K. L. (1987). Contact mechanics. Cambridge: Cambridge Univerisity Press.
  • JTG 2120-2020. (2020). Unified standard for reliability design of highway engineering structures. Ministry of Transport of China.
  • Kang, Z. C., Cui, P., Wei, F. Q., & He, S. F. (2007). Observed and experimental data at Dongchuan debris flow research station of Chinese Academy of Sciences. Beijing, China: Science Press.
  • Kawahara, S., & Muro, T. (2006). Effects of dry density and thickness of sandy soil on impact response due to rockfall. Journal of Terramechanics, 43(3), 329–340. doi:10.1016/j.jterra.2005.05.009
  • Lee, E. M., & Jones, D. (2004). Landslide risk assessment, suicide risk management: A manual for health professionals (2nd ed.). Hoboken, NJ: John Wiley & Sons, Ltd.
  • Li, Y., J. J. L, Hu, K. H, L., & Su, P. C. (2012). Probability distribution of measured debris-flow velocity in Jiangjia Gully, Yunnan Province, China. Natural Hazards, 60(2), 689–701. doi:10.1007/s11069-011-0033-0
  • Lin, W. (2012). Damage of boulders in the debris-flow impacting on the bridge pier (MSc thesis). University of Chinese Academy of Sciences, University of Chinese Academy of Sciences e-Repository. http://ir.imde.ac.cn/handle/131551/4178.
  • Liu, C., Yu, Z. H. X., Luo, L. R., Gu, S., & Zhao, S. H. C. (2019). Dynamic behavior of a concrete dam impacted by debris flows with rock. Journal of Vibration and Shock, 38(14), 161–168. doi:10.13465/j.cnki.jvs.2019.14.023
  • LS-DYNA. (2007). Keyword user’s manual. Version 971. Livermore, CA: Software Technology Corporation.
  • Malvar, L. J., Crawford, J. E., Wesevich, J. W., & Simons, D. (1997). A plasticity concrete material model for DYNA3D. International Journal of Impact Engineering, 19(9-10), 847–873. doi:10.1016/S0734-743X(97)00023-7
  • Melchers, R. E., & Beck, A. T. (2018). Structural reliability analysis and prediction. Hoboken, NJ: John Wiley & Sons Ltd.
  • Mizuyama, T. (1979). Evaluation of impact of debris flow on check dams. Journal of the Japan Society of Erosion Control Engineering, 32(1), 40–43. doi:10.11475/sabo1973.32.40
  • Ni, J. R., & Wang, G. Q. (1998). Conceptual two phase flow model of debris flow: I. Theory. Acta Geographica Sinica, 53(1), 66–76. doi:10.3321/j.issn:0375-5444.1998.01.011
  • Priestley, M. J. N., Verma, R., & Xiao, Y. (1994). Seismic shear strength of reinforced concrete columns. Journal of Structural Engineering, 120(8), 2310–2329. doi:10.1061/(ASCE)0733-9445(1994)120:8(2310)
  • Scheidl, C., Chiari, M., Kaitna, R., Müllegger, M., Krawtschuk, A., Zimmermann, T., & Proske, D. (2013). Analyzing debris-flow impact models, based on a small scale modeling approach. Surveys in Geophysics, 34(1), 121–140. doi:10.1007/s10712-012-9199-6
  • Schwer, L. E., & Malvar, L. J. (2005). Simplified concrete modeling with MAT_CONCRETE_DAMAGE_REL3 LS-DYNA Anwenderforum 2005, Bamberg, Germany.
  • Shu, A. P., Sun, J. T., Zhang, X., Wang, S. H., Shi, Z. H., & Pan, H. L. (2016). Dynamic characteristics of formation process for non-homogeneous debris flow. Journal of Hydraulic Engineering, 47(7), 850–857.
  • Tian, L., Zhu, C., Wang, H., & Feng, X. H. (2013). Dynamic response and failure models of RC columns under impact. Engineering Mechanics, 30(2), 150–155. doi:10.6052/j.issn.1000-4750.2011.07.0458
  • Tu, Z., & Lu, Y. (2009). Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations. International Journal of Impact Engineering, 36(1), 132–146. doi:10.1016/j.ijimpeng.2007.12.010
  • Wang, D. P., Chen, Z. H., He, S., Liu, Y., & Tang, H. (2018). Measuring and estimating the impact pressure of debris flows on bridge piers based on large-scale laboratory experiments. Landslides, 15(7), 1331–1345. doi:10.1007/s10346-018-0944-x
  • Wang, D. P., Chen, Z. H., He, S. M., Chen, K. J., Liu, F. M., & Li, M. Q. (2019). Physical model experiments of dynamic interaction between debris flow and bridge pier model. Rock and Soil Mechanics, 40(09), 3363–3372. doi:10.16285/j.rsm.2018.1011
  • Wang, Y. B., Yao, C. R., Liu, S. Z., Li, Y. D., & Zhang, X. (2019). Experiment study of debris flow impact forces on bridge piers. Rock and Soil Mechanics, 40(2), 616–623. doi:10.16285/j.rsm.2017.1582
  • Wu, J. S., Kang, Z. C., & Tian, L. Q. (1990). Data collection of kinematic observation and study on debris flow in Jiangjia Gully. Beijing, China: Science Press.
  • Xie, H., Zhong, D. L., Wei, F. Q., Li, Y., Ma, D. T., & Yang, K. (2006). Debris flow hazards and their formation causes in mountain urban area of China. Journal of Mountain Science, 24(1), 79–87. doi:10.3969/j.issn.1008-2786.2006.01.011
  • Xie, Z. Y., & Pan, J. H. (2020). Judgment of collapse modes of reinforced concrete cylindrical piers under quasi-static lateral impact. Journal of Jinggangshan University (Natural Science), 41(4), 77–82. doi:10.3969/j.issn.1674-8085.2020.04.015
  • Yamaguchi, I. (1985). Erosion Control Engineering. Tokyo, Japan: Earth Press.
  • Yan, Y., Ge, Y. G., Zhang, Z. Q., & Zeng, C. (2014). Research on the debris flow hazards in Cutou Gully, Wenchuan County on July 10, 2013. Journal of Catastrophology, 29(3), 229–234. doi:10.3969/j.issn.1000-811X.2014.03.042
  • Zhou, X. Y., Ma, R. J., & Chen, A. R. (2017). Anti-shear reliability analysis for a reinforced concrete column subjected to rockfall impact. Journal of Vibration and Shock, 36(7), 262–270. doi:10.13465/j.cnki.jvs.2017.07.039
  • Zou, Q., Zhou, G. G. D., Li, S. S., Ouyang, C. J., & Tang, J. B. (2017). Dynamic process analysis and hazard prediction of debris flow in Eastern Qinghai-Tibet Plateau Area – A case study at Ridi Gully. Arctic, Antarctic, and Alpine Research, 49(3), 373–390. doi:10.1657/AAAR0017-019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.