Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 20, 2024 - Issue 1
189
Views
1
CrossRef citations to date
0
Altmetric
ARTICLE

Creating an asset management plan for traffic signal structures through interactive explorations of wind induced fatigue damage

ORCID Icon, ORCID Icon &
Pages 69-82 | Received 17 May 2021, Accepted 27 Jan 2022, Published online: 26 May 2022

References

  • Alexander, L. A., & Wood, J. (2009). A study of the low-cycle fatigue failure of a galvanised steel lighting column. Engineering Failure Analysis, 16(7), 2153–2162. doi:10.1016/j.engfailanal.2009.02.012
  • American Association of State Highway and Transportation Officials. (2016). LRFD specifications for structural supports for highway signs, luminaries, and traffic signals. Washington, DC: American Association of State Highway and Transportation Officials (AASHTO).
  • American Society of Civil Engineers. (2017). ASCE 7-16: Minimum design loads and associated criteria for buildings and other structures. Washington DC: American Society of Civil Engineers (ASCE).
  • Anderson, T. H. (2007). Fatigue life investigation of traffic signal mast-arm connection details (Masters Thesis). Austin, TX: University of Texas at Austin.
  • Archer, G. L., & Gurney, T. R. (1970). Fatigue strength of mild steel fillet welded tube to plate joints. Metal Construction and British Welding Journal, 2(5), 207–210.
  • Baird, R. C. (1955). Wind-induced vibration of a pipe-line suspension bridge, and its cure. Transactions of the ASME, 77, 797–804.
  • Basquin, O. H. (1910). The exponential law of endurance tests. Proceedings-American Society for Testing and Materials, 10, 625–630.
  • Beaurepaire, P., Valdebenito, M. A., Schuëller, G. I., & Jensen, H. A. (2012). Reliability-based optimization of maintenance scheduling of mechanical components under fatigue. Computer Methods in Applied Mechanics and Engineering, 221, 24–40.
  • Benedikt, G., Pebesma, E., & Heuvelink, G. (2016). Spatio-temporal interpolation using gstat. The R Journal, 8(1), 204–218.
  • Bivand, R. S., Pebesma, E., & Gómez-Rubio, V. (2013). Applied spatial data analysis with R (Vol. 10). New York, NY: Springer Science & Business Media.
  • Chang, W., Cheng, J., Allaire, J. J., Xie, Y., & McPherson, J. (2019). Shiny: Web application framework for R. R package (Version 1.2.0).
  • Chavez, J. W., Gilani, A. S., & Whittaker, A. S. (1997). Fatigue-life evaluation of changeable message sign structures, Volume 2-Retrofitted structures. Report No. UCB/EERC-97.
  • Chen, G., Barker, M. G., Dharani, L. R., & Ramsay, C. W. (2003). Signal mast arm fatigue failure investigation. Jefferson City, MO: Missouri Department of Transportation.
  • Cheng, J., Karambelkar, B., & Xie, Y. (2018). Leaflet: Create interactive web maps with the javascript’leaflet’library (Version 1.0). [Computer software].
  • Connor, R. J. (2012). Fatigue loading and design methodology for high-mast lighting towers (Vol. 718). Washington D.C.: Transportation Research Board.
  • De Castro, P., Tavares, S. M. O., Richter-Trummer, V., De Matos, P. F. P., Moreira, P., & Da Silva, L. F. M. (2010). Damage tolerance of aircraft panels. Revista Da Associação Portuguesa de Análise Experimental de Tensões. ISSN, 1646, 7078, 35–46.
  • DeSantis, P. V., & Haig, P. E. (1996). Unanticipated loading causes highway sign failure. Proceedings of ANSYS Convention, 3, 98–103.
  • Dexter, R. J., & Johns, K. W. (1998). Fatigue-related wind loads on highway support structures: Advanced technology for large structural systems. In Advanced technology for structural systems (ATLSS), report (Issues 98-03).
  • Diekfuss, J. A. (2013). Reliability-based fatigue assessment of mast-arm sign support structures (Doctoral Dissertation). Marquette University.
  • Durst, C. S. (1960). Wind speeds over short periods of time. Meteor. Mag, 89(1056), 181–187.
  • Farreras Alcover, I. (2014). Data-based models for assessment and life prediction of monitored civil infrastructure assets. (Doctoral Dissertation). University of Surrey.
  • Garbatov, Y., & Soares, C. G. (2004). Influence of steel strength on the fatigue reliability of welded structural components. International Journal of Fatigue, 26(7), 753–762. doi:10.1016/j.ijfatigue.2003.10.020
  • Ginal, S. (2003). Fatigue performance of full-span sign support structures considering truck-induced gust and natural wind pressures (Masters thesis). Marquette University.
  • Grandt, F. (2011). Damage tolerant design and nondestructive inspection-keys to aircraft airworthiness. Procedia Engineering, 17, 236–246. doi:10.1016/j.proeng.2011.10.025
  • Hamilton, H. R., III, Puckett, J. A., Gray, B., Wang, P., Deschamp, B., & McManus, P. (2004). Traffic signal pole research.
  • Hectors, K., De Backer, H., Loccufier, M., & De Waele, W. (2019). A numerical framework for fatigue lifetime prediction of complex welded structures. Frattura ed Integrità Strutturale, 14(51), 552–566. doi:10.3221/IGF-ESIS.51.42
  • Horel, J., Splitt, M., Dunn, L., Pechmann, J., White, B., Ciliberti, C., … Burks, J. (2002). Mesowest: Cooperative mesonets in the western United States. Bulletin of the American Meteorological Society, 83(2), 211–226. doi:10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2
  • Irwin, H., & Peeters, M. (1980). An investigation of the aerodynamic stability of slender sign bridges, Calgary. Ottawa, Canada: National Research Council Canada.
  • Jon, B. (1999, April 24). 113-mph winds set Utah record. Deseret News. https://www.deseret.com/1999/4/24/19441867/113-mph-winds-set-utah-record.
  • Kacin, J., Rizzo, P., & Tajari, M. (2010). Fatigue analysis of overhead sign support structures. Engineering Structures, 32(6), 1659–1670. doi:10.1016/j.engstruct.2010.02.014
  • Kaczinski, M. R., Dexter, R. J., & Van Dien, J. P. (1998). NCHRP Report 412: Fatigue-resistant design of cantilevered signal, sign and light supports. Washington, D.C.: TRB, National Research Council.
  • Koenigs, M. T., Botros, T. A., Freytag, D., & Frank, K. H. (2003). Fatigue strength of signal mast arm connections. Washington, D.C.: Federal Highway Authority (No. FHWA/TX-04/4178-2).
  • Li, X., Whalen, T. M., & Bowman, M. D. (2006). Fatigue strength and evaluation of sign structures, volume 1: Analysis and evaluation. Joint Transportation Research Program.
  • Markow, M. J. (2007). Managing selected transportation assets: Signals, lighting, signs, pavement markings, culverts, and sidewalks (Vol. 371). Washington D.C.: Transportation Research Board.
  • Miner, M. A. (1945). Cumulative fatigue damage. Journal of Applied Mechanics, 12(3), A159–A164. doi:10.1115/1.4009458
  • Newman, J. C. Jr, (2000). Advances in fatigue and fracture mechanics analyses for metallic aircraft structures. NASA Technical Memorandum, 210084, 1–45.
  • Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30(7), 683–691. doi:10.1016/j.cageo.2004.03.012
  • Pebesma, E., & Bivand, R. S. (2005). S classes and methods for spatial data: the sp package. R News, 5(2), 9–13.
  • Peiffer, J. P., Puckett, J. A., & Erikson, R. G. (2008). Fatigue testing of ring-stiffened traffic signal structures. Washington D.C.: Federal Highway Authority (No. FHWA-WY-08-05F).
  • Pipinato, A. (2011). Fatigue evaluation and assessment of a railway bridge. Technical report.
  • Price, P. (1956). Suppression of the fluid-induced vibration of circular cylinders. Journal of the Engineering Mechanics Division, 82(3), 1–22. doi:10.1061/JMCEA3.0000008
  • R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Core Team. Retrieved from https://www.R-project.org/.
  • RStudio Team. (2020). RStudio | Open source & professional software for data science teams (Version 2022.02.0-443). https://rstudio.com/.
  • Scruton, C., & Walshe, D. E. J. (1957). A means for avoiding wind-excited oscillations of structures with circular or nearly circular cross section. National Physical Laboratory (UK), Aero Rep, 335.
  • Shanmugam, V., Zhao, T., Krams, W., Joshi, A., Cao, H., & Schmidt, P. (2019). Fatigue reliability analysis framework for medical devices based on a probabilistic finite element approach. In Fourth Symposium on Fatigue and Fracture of Metallic Medical Materials and Devices.
  • Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM National Conference, 517–524. doi:10.1145/800186.810616
  • Simiu, E., & Scanlan, R. H. (1996). Wind’s effects on structures: Fundamentals and applications to design (3rd ed.). New York, NY: John Wiley & Sons.
  • South, J. M. (1994). Fatigue analysis of overhead sign and signal structures. Illinois: Department of Transportation, Bureau of Materials and Physical Research.
  • Synoptic Data. (n.d.). Retrieved January 13, 2021, from https://synopticdata.com/.
  • Tavares, S. M. O., & De Castro, P. (2017). An overview of fatigue in aircraft structures. Fatigue & Fracture of Engineering Materials & Structures, 40(10), 1510–1529. doi:10.1111/ffe.12631
  • Utah Department of Transportation. (2014). Standard specifications standard drawings index. https://www.udot.utah.gov/connect/business/standards/.
  • Vellozzi, J., & Cohen, E. (1970). Dynamic response of tall flexible structures to wind loading. Building Science Series. Wind Loads on Buildings and Structures, 30, 115–128.
  • Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. doi:10.21105/joss.01686
  • Xiao, Z.-G., & Yamada, K. (2003). Fatigue evaluation of steel post structures. Structural Engineering/Earthquake Engineering, 20(2), 119s–130s. doi:10.2208/jsceseee.20.119s
  • Zhu, S.-P., Huang, H.-Z., Peng, W., Wang, H.-K., & Mahadevan, S. (2016). Probabilistic physics of failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty. Reliability Engineering & System Safety, 146, 1–12. doi:10.1016/j.ress.2015.10.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.