Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 20, 2024 - Issue 1
225
Views
3
CrossRef citations to date
0
Altmetric
ARTICLE

A rapid neural network-based demand estimation for generic buildings considering the effect of soft/weak story

, , &
Pages 97-116 | Received 12 Oct 2021, Accepted 17 May 2022, Published online: 28 May 2022

References

  • FEMA. (2017). Rapid visual screening of buildings for potential seismic hazards: A handbook. Washington DC: Government Printing Office.
  • Akın, E. (2019). Open ground story in properly designed reinforced concrete frame buildings with shear walls. In Structures, 20, 822–831. Retrieved from doi:10.1016/j.istruc.2019.07.003
  • Akin, S. K., Bahadir, F., Balik, F. S., & Turan, M. (2022). The rc samples with infill walls strengthened with steel truss wires. In Structures, 36, 248–261. doi:10.1016/j.istruc.2021.12.026
  • Apostolska, R., Necevska-Cvetanovska, G., Bojadzieva, J., & Gjorgjievska, E. (2016). Seismic performance assessment of soft-story RC frame buildings. Journal of International Environment Application Science, 11(3), 241–248.
  • ASCE. (2017). Seismic evaluation and retrofit of existing buildings (asce/sei 41-17).
  • Barkhordari, M. S., & Tehranizadeh, M. (2021). Response estimation of reinforced concrete shear walls using artificial neural network and simulated annealing algorithm. Structures, 34, 1155–1168. Retrieved from. doi:10.1016/j.istruc.2021.08.053
  • Betti, M., Facchini, L., & Biagini, P. (2015). Damage detection on a three-storey steel frame using artificial neural networks and genetic algorithms. Meccanica, 50(3), 875–886. Retrieved from. doi:10.1007/s11012-014-0085-9
  • Binici, B., Canbay, E., Aldemir, A., Demirel, I. O., Uzgan, U., Eryurtlu, Z., … Yakut, A. (2019). Seismic behavior and improvement of autoclaved aerated concrete infill walls. Engineering Structures, 193, 68–81. Retrieved from. doi:10.1016/j.engstruct.2019.05.032
  • Chopra, A. K. (2007). Dynamics of structures. New Jersey, USA: Prentice Hall.
  • Choudhury, T., & Kaushik, H. B. (2018). Seismic fragility of open ground storey rc frames with wall openings for vulnerability assessment. Engineering Structures, 155, 345–357. Retrieved from. doi:10.1016/j.engstruct.2017.11.023
  • Dadi, V. S. K., & Agarwal, P. (2013). Updating of nonlinear analytical modeling of soft storey rc frame building models based on cyclic test results. Bulletin of Earthquake Engineering, 11(5), 1493–1515. Retrieved from. doi:10.1007/s10518-013-9434-7
  • Das, S., & Nau, J. M. (2003). Seismic design aspects of vertically irregular reinforced concrete buildings. Earthquake Spectra, 19(3), 455–477. Retrieved from. doi:10.1193/1.1595650
  • Dya, A. F. C., & Oretaa, A. W. C. (2015). Seismic vulnerability assessment of soft story irregular buildings using pushover analysis. Procedia Engineering, 125, 925–932. Retrieved from. doi:10.1016/j.proeng.2015.11.103
  • Federal Emergency Management Agency, A. T. C. (2012). Next-generation methodology for seismic performance assessment of buildings (Vol. 1). Washington, DC: Federal Emergency Management Agency.
  • FEMA. (2012). Multi-hazard loss estimation methodology hazus-mh 2.1 advanced engineering building module (aebm) technical and user’s manual. Washington, DC: Federal Emergency Management Agency.
  • FEMA. (2017). Hazus: Multi-hazard loss estimation methodology earthquake model: Technical manual. Washington, D.C., USA: Federal Emergency Management Agency.
  • Goda, K., Kiyota, T., Pokhrel, R. M., Chiaro, G., Katagiri, T., Sharma, K., & Wilkinson, S. (2015). The 2015 gorkha Nepal earthquake: Insights from earthquake damage survey. Frontiers in Built Environment, 1, 8. Retrieved from. doi:10.3389/fbuil.2015.00008
  • Graupe, D. (2013). Principles of artificial neural networks (Vol. 7). Singapore: World Scientific.
  • Hait, P., Sil, A., & Choudhury, S. (2020). Seismic damage assessment and prediction using artificial neural network of rc building considering irregularities. Journal of Structural Integrity and Maintenance, 5(1), 51–69. Retrieved from. doi:10.1080/24705314.2019.1692167
  • Hasegawa, A., Yoshida, K., Asano, Y., Okada, T., Iinuma, T., & Ito, Y. (2012). Change in stress field after the 2011 great tohoku-oki earthquake. Earth and Planetary Science Letters, 355-356, 231–243. Retrieved from. doi:10.1016/j.epsl.2012.08.042
  • Iwan, W. (1997). Drift spectrum: Measure of demand for earthquake ground motions. Journal of Structural Engineering, 123(4), 397–404. Retrieved from doi:10.1061/(ASCE)0733-9445(1997)123:4(397)
  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science (New York, N.Y.), 349(6245), 255–260. Retrieved from. doi:10.1126/science.aaa8415
  • Kalakonas, P., & Silva, V. (2022). Seismic vulnerability modelling of building portfolios using artificial neural networks. Earthquake Engineering & Structural Dynamics, 51Retrieved from (2), 310–327. doi:10.1002/eqe.3567
  • Karami-Mohammadi, R., Mirtaheri, M., Salkhordeh, M., & Hariri-Ardebili, M. (2019). A cost-effective neural network–based damage detection procedure for cylindrical equipment. Advances in Mechanical Engineering, 11(7), 168781401986694. Retrieved from. doi:10.1177/1687814019866942
  • Lagaros, N. D., & Papadrakakis, M. (2012). Neural network based prediction schemes of the non-linear seismic response of 3d buildings. Advances in Engineering Software, 44(1), 92–115. Retrieved from. doi:10.1016/j.advengsoft.2011.05.033
  • Lu, X., Han, B., Hori, M., Xiong, C., & Xu, Z. (2014). A coarse-grained parallel approach for seismic damage simulations of urban areas based on refined models and gpu/cpu cooperative computing. Advances in Engineering Software, 70, 90–103. Retrieved from. doi:10.1016/j.advengsoft.2014.01.010
  • Lu, X., Lu, X., Guan, H., & Ye, L. (2013). Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes. Earthquake Engineering & Structural Dynamics, 42(5), 705–723. Retrieved from. doi:10.1002/eqe.2240
  • Mazzoni, S., McKenna, F., Scott, M. H., & Fenves, G. L. (2006). Opensees command language manual (pp. 264). Pacific Earthquake Engineering Research (PEER) Center.
  • Morfidis, K., & Kostinakis, K. (2018). Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks. Engineering Structures, 165, 120–141. Retrieved from. doi:10.1016/j.engstruct.2018.03.028
  • Mori, N., Takahashi, T., Yasuda, T., & Yanagisawa, H. (2011). Survey of 2011 tohoku earthquake tsunami inundation and run-up. Geophysical Research Letters, 38(7). Retrieved from. doi:10.1029/2011GL049210
  • Building Sciences (Washington, N. I., & Agency, U. S. F. E. M.). (1997). Earthquake loss estimation methodology:” hazus” technical manual (Vol. 1). Federal Emergency Management Agency.
  • Oh, B. K., Park, Y., & Park, H. S. (2020). Seismic response prediction method for building structures using convolutional neural network. Structural Control and Health Monitoring, 27(5), e2519. Retrieved from. doi:10.1002/stc.2519
  • Park, R. (1989). Evaluation of ductility of structures and structural assemblages from laboratory testing. Bulletin of the New Zealand Society for Earthquake Engineering, 22(3), 155–166. Retrieved from. doi:10.5459/bnzsee.22.3.155-166
  • Parsons, T., Ji, C., & Kirby, E. (2008). Stress changes from the 2008 wenchuan earthquake and increased hazard in the sichuan basin. Nature, 454(7203), 509–510. Retrieved from. doi:10.1038/nature07177
  • Ranganathan, A. (2004). The levenberg-marquardt algorithm. Tutoral on LM Algorithm, 11(1), 101–110.
  • Rasmussen, C. E. (2003). Gaussian processes in machine learning. In Max Planck Institute for Biological Cybernetics (pp. 63–71). Germany: Springer.
  • Rojahn, C., & Sharpe, R. L. (1985). Earthquake damage evaluation data for california. Applied technology council.
  • Ruiz-Garcia, J., & Miranda, E. (2010). Probabilistic estimation of residual drift demands for seismic assessment of multi-story framed buildings. Engineering Structures, 32(1), 11–20. Retrieved from. doi:10.1016/j.engstruct.2009.08.010
  • Salkhordeh, M., & Mirtaheri, M. (2022). A swift neural network-based algorithm for demand estimation in concrete moment-resisting buildings. Journal of Numerical Methods in Civil Engineering, 6(3), 1–9.
  • Salkhordeh, M., Mirtaheri, M., & Soroushian, S. (2021). A decision-tree-based algorithm for identifying the extent of structural damage in braced-frame buildings. Structural Control and Health Monitoring, 28(11), e2825. Retrieved from. doi:10.1002/stc.2825
  • Sattar, S., & Liel, A. B. (2016). Seismic performance of nonductile reinforced concrete frames with masonry infill walls—i: Development of a strut model enhanced by finite element models. Earthquake Spectra, 32(2), 795–818. Retrieved from. doi:10.1193/90914eqs139m
  • Sattar, S., & Liel, A. B. (2010). Seismic performance of reinforced concrete frame structures with and without masonry infill walls. In 9th us national and 10th Canadian conference on earthquake engineering.
  • Seyedi, D., Gehl, P., Douglas, J., Davenne, L., Mezher, N., & Ghavamian, S. (2009). Development of seismic fragility surfaces for reinforced concrete buildings by means of nonlinear time-history analysis. Earthquake Engineering & Structural Dynamics, 39(1), n/a–108. Retrieved from. doi:10.1002/eqe.939
  • SimCenter (2019). An application framework for regional earthquake simulations. California, USA: NHERI.
  • Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. In Advances in neural information processing systems (Vol. 25, pp. 2951–2959).
  • Sobhaninejad, G., Hori, M., & Kabeyasawa, T. (2011). Enhancing integrated earthquake simulation with high performance computing. Advances in Engineering Software, 42(5), 286–292. Retrieved from. doi:10.1016/j.advengsoft.2010.10.009
  • Somerville, P. G. (1997). Development of ground motion time histories for phase 2 of the fema/sac steel project. SAC Joint Venture.
  • Stafford Smith, B., & Carter, C. (1969). A method of analysis for infilled frames. Proceedings of the Institution of Civil Engineers, 44(1), 31–48. doi:10.1680/iicep.1969.7290
  • Tena-Colunga, A., & Hernández-García, D. A. (2020). Peak seismic demands on soft and weak stories models designed for required code nominal strength. Soil Dynamics and Earthquake Engineering, 129, 105698. Retrieved from. doi:10.1016/j.soildyn.2019.05.037
  • Vafaei, M., Adnan, A. b., & Abd. Rahman, A. B. (2013). Real-time seismic damage detection of concrete shear walls using artificial neural networks. Journal of Earthquake Engineering, 17(1), 137–154. Retrieved from. doi:10.1080/13632469.2012.713559
  • Wibowo, A., Wilson, J. L., Lam, N. T., & Gad, E. F. (2010). Collapse modelling analysis of a precast soft storey building in australia. Engineering Structures, 32(7), 1925–1936. Retrieved from. doi:10.1016/j.engstruct.2010.03.003
  • Ye, L., Lu, X., & Li, Y. (2010). Design objectives and collapse prevention for building structures in mega-earthquake. Earthquake Engineering and Engineering Vibration, 9(2), 189–199. Retrieved from doi:10.1007/s11803-010-0005-5
  • Yegnanarayana, B. (2009). Artificial neural networks. New Delhi: PHI Learning Pvt. Ltd.
  • Yoshimura, M. (1997). Nonlinear analysis of a reinforced concrete building with a soft first story collapsed by the 1995 hyogoken-nanbu earthquake. Cement and Concrete Composites, 19(3), 213–221. Retrieved from. doi:10.1016/S0958-9465(97)00016-4
  • Yu, H., & Wilamowski, B. M. (2011). Levenberg-marquardt training. Industrial Electronics Handbook, 5(12), 1.
  • Zhai, C., Kong, J., Wang, X., & Chen, Z. (2016). Experimental and finite element analytical investigation of seismic behavior of full-scale masonry infilled RC frames. Journal of Earthquake Engineering, 20(7), 1171–1198. Retrieved from. doi:10.1080/13632469.2016.1138171
  • Zhang, Y., Burton, H. V., Sun, H., & Shokrabadi, M. (2018). A machine learning framework for assessing post-earthquake structural safety. Structural Safety, 72, 1–16. Retrieved from. doi:10.1016/j.strusafe.2017.12.001
  • Zhu, M., McKenna, F., & Scott, M. H. (2018). Openseespy: Python library for the opensees finite element framework. SoftwareX, 7, 6–11. Retrieved from. doi:10.1016/j.softx.2017.10.009
  • Zizouni, K., Fali, L., Sadek, Y., & Bousserhane, I. K. (2019). Neural network control for earthquake structural vibration reduction using mrd. Frontiers of Structural and Civil Engineering, 13(5), 1171–1182. Retrieved from. doi:10.1007/s11709-019-0544-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.