Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 20, 2024 - Issue 1
2,135
Views
8
CrossRef citations to date
0
Altmetric
ARTICLE

A comparison of the UK and Italian national risk-based guidelines for assessing hydraulic actions on bridges

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 117-130 | Received 09 Nov 2021, Accepted 10 Mar 2022, Published online: 03 Jun 2022

References

  • AASHTO. (2020). LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials 9th Edition, Washington, DC. ISBN: 978-1-56051-738-2
  • Abé, M., Shimamura, M., & Fujino, Y. (2014). Risk management and monitoring of Japanese railway bridges. Proceedings of the Institution of Civil Engineers - Forensic Engineering, 167(2), 88–98. doi:10.1680/feng.13.00022
  • Adey, B., Hajdin, R., & Brühwiler, E. (2003). Risk-based approach to the determination of optimal interventions for bridges affected by multiple hazards. Engineering Structures, 25(7), 903–912. doi:10.1016/S0141-0296(03)00024-5
  • Anderson, N. L., Ismael, A. M., & Thitimakor, T. (2007). Ground-penetrating radar: A tool for monitoring bridge scour. Environmental and Engineering Geoscience, 13(1), 1–10. doi:10.2113/gseegeosci.13.1.1
  • Arneson, L. A., Zevenbergen, L. W., Lagasse, P. F., & Clopper, P. E. (2012). Evaluating scour at bridges (5th ed.). Report No. FHWA-HIF-12-003 HEC-18. Washington, DC: Federal Highway Administration, US Department of Transportation. Retrieved from https://www.fhwa.dot.gov/engineering/hydraulics/pubs/hif12003.pdf
  • Ballio, F., Ballio, G., Franzetti, S., Crotti, G., & Solari, G. (2018). Actions monitoring as an alternative to structural rehabilitation: Case study of a river bridge. Structural Control and Health Monitoring, 25(11), e2250. doi:10.1002/stc.2250
  • Blockley, D. I. (2011). Engineering safety. Proceedings of the Institution of Civil Engineers - Forensic Engineering, 164(1), 7–13. doi:10.1680/feng.2011.164.1.7
  • BSI. (2002). BS EN 1990: Eurocode basis of design. London, UK: BSI.
  • BSI. (2005). BS EN 1991-1-6: 2005 Eurocode 1. General actions. Actions during execution. London, UK: BSI.
  • BSI. (2006). BS EN 1990: BS EN 1991-1-7: Eurocode 1: Actions on structures – Part 1-7: General actions – accidental actions. London, UK: BSI.
  • Campos, J. C., Casas, J. R., & Fernandes, S. (2016). COST Action TU1406 quality specifications for roadway bridges (BridgeSpec). In Maintenance, Monitoring, Safety, Risk and Resilience of Bridges and Bridge Networks: Proceedings of the 8th International Conference on Bridge Maintenance, Safety and Management (IABMAS 2016), Foz do Iguazu, Brazil. The Netherlands: CRC Press/Balkema Taylor & Francis Group.
  • CIRIA. (2017). Manual on scour at bridges and other hydraulic structures (C742) (2nd ed.). London, UK: CIRIA.
  • CSLP. (2020). Linee Guida per la Classificazione e Gestione del Rischio, la Valutazione della Sicurezza ed il Monitoraggio dei Ponti Esistenti. Ministero delle Infrastrutture e dei Trasporti. Consiglio Superiore dei Lavori Pubblici. Retrieved from https://bit.ly/3qiwRDR (In Italian)
  • D.Lgs. (2010, February 23). n. 49. Attuazione della direttiva 2007/60/CE relativa alla valutazione e alla gestione dei rischi di alluvioni. . Retrieved from https://bit.ly/309dL8K.
  • De Matteis, G., Bencivenga, P., & Zizi, M. (2021, August 29– September). Structural risk assessment of existing road bridges according to Italian Guidelines based on a territorial case study. In EUROSTRUCT 2021, Padova, Italy.
  • Éupolis Lombardia. (2013). Valutazione del ciclo di vita delle infrastrutture sensibili con selezione degli interventi necessari - Allegato B. Schede analitiche sui ponti – analisi economico-territoriale e trasportistica. Istituto superiore per la ricerca, la statistica e la formazione. Retrieved from https://bit.ly/3wo6qhc. (in Italian).
  • Farreras-Alcover, I., Andersen, J. E., & McFadyen, N. (2016). Assessing temporal requirements for SHM campaigns. Proceedings of the Institution of Civil Engineers – Forensic Engineering, 169(2), 61–71. doi:10.1680/jfoen.15.00015
  • FHWA. (2004). National bridge inspection standards. Washington, DC: 23 CFR Part 650, Federal Highway Administration (FHWA), U.S. Department of Transportation.
  • Giordano, P. F., Prendergast, L. J., & Limongelli, M. P. (2020). A framework for assessing the value of information for health monitoring of scoured bridges. Journal of Civil Structural Health Monitoring, 10(3), 485–496. doi:10.1007/s13349-020-00398-0
  • Giordano, P. F., Prendergast, L. J., & Limongelli, M. P. (2022). Quantifying the value of SHM information for bridges under flood-induced scour. Structure and Infrastructure Engineering (Online), 1–17. doi:10.1080/15732479.2022.2048030
  • Hamill, L. (1999). Bridge hydraulics. London: E.& F.N. Spon.
  • Highways Agency (HA). (2012). The assessment of scour and other hydraulic actions at highway structures BD97/12. Design manual for roads & bridges. London, UK: HMSO. Retrieved from https://www.standardsforhighways.co.uk/prod/attachments/8ff7a31b-1ce0-4e34-9e94-b2372f125f34?inline=true
  • Khakzad, N., & van Gelde, P. (2016). Re-Gen risk assessment of ageing infrastructure. Risk optimization in road infrastructure elements. Deliverable No. 4.2, January 2016. CEDR Transnational Road Research Programme. Retrieved from https://www.cedr.eu/download/other_public_files/research_programme/call_2013/ageing_infrastructure/re-gen/D4.2-Risk-Optimisation-in-Road-Infrastructure-Elements.pdf
  • Klinga, J. V., & Alipour, A. (2015). Assessment of structural integrity of bridges under extreme scour conditions. Engineering Structures, 82, 55–71. doi:10.1016/j.engstruct.2014.07.021
  • Lamb, R., Garside, P., Pant, R., & Hall, J. W. (2019). A probabilistic model of the economic risk to Britain's railway network from bridge scour during floods. Risk Analysis : An Official Publication of the Society for Risk Analysis, 39(11), 2457–2478. doi:10.1111/risa.13370
  • Maddison, B. (2012). Scour failure of bridges. Proceedings of the Institution of Civil Engineers – Forensic Engineering, 165(1), 39–52. doi:10.1680/feng.2012.165.1.39
  • Majid, S. A., & Tripathi, S. (2021). Pressure-flow scour due to vertical contraction: A review. Journal of Hydraulic Engineering, 147(12), 03121002. doi:10.1061/(ASCE)HY.1943-7900.0001943
  • Mn DOT. (2009, December). Bridge scour evaluation procedure for Minnesota bridge. Minnesota Department of Transportation. Retrieved from https://www.dot.state.mn.us/bridge/pdf/hydraulics/ScourGuidelines_12-09.pdf
  • Nasr, A., Kjellström, E., Björnsson, I., Honfi, D., Ivanov, O. L., & Johansson, J. (2020). Bridges in a changing climate: A study of the potential impacts of climate change on bridges and their possible adaptations. Structure and Infrastructure Engineering, 16(4), 738–749. doi:10.1080/15732479.2019.1670215
  • NTC. (2018). Ministry of Infrastructure Decree, DM 17 gennaio 2018: Aggiornamento delle Norme tecniche per le costruzioni, Suppl. or. n.30 alla G.U. n.29 del 4/2/2008 (in Italian)
  • Panici, D., Kripakaran, P., Djordjević, S., & Dentith, K. (2020). A practical method to assess risks from large wood debris accumulations at bridge piers. The Science of the Total Environment, 728, 138575. doi:10.1016/j.scitotenv.2020.138575
  • Pregnolato, M. (2019). Bridge safety is not for granted – A novel approach for bridge management. Engineering Structures, 196, 109193. doi:10.1016/j.engstruct.2019.05.035
  • Pregnolato, M., Vardanega, P. J., Limongelli, M. P., Giordano, P. F., & Prendergast, L. J. (2020). Risk-based scour management: A survey. In H. Yokota & D. M. Frangopol (Eds.), Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations: Proceedings of the 10th International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020) (pp. 693–701). Sapporo, Japan, April 11–15, 2021. The Netherlands: CRC Press/Balkema Taylor & Francis Group. doi:10.1201/9780429279119-91
  • Prendergast, L. J., & Gavin, K. (2014). A review of bridge scour monitoring techniques. Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 138–159. doi:10.1016/j.rmge.2014.01.007
  • Santarsiero, G., Masi, A., Picciano, V., & Digrisolo, A. (2021). The Italian guidelines on risk classification and management of bridges: Applications and remarks on large scale risk assessments. Infrastructures, 6(8), 111. doi:10.3390/infrastructures6080111
  • Sasidharan, M., Parlikad, A. K., & Schooling, J. (2021). Risk-informed asset management to tackle scouring on bridges across transport networks. Structure and Infrastructure Engineering, 1–17. doi:10.1080/15732479.2021.1899249
  • Selvakumaran, S., Plank, S., Geiß, C., Rossi, C., & Middleton, C. (2018). Remote monitoring to predict bridge scour failure using Interferometric Synthetic Aperture Radar (InSAR) stacking techniques. International Journal of Applied Earth Observation and Geoinformation, 73, 463–470. doi:10.1016/j.jag.2018.07.004
  • Takano, H., & Pooley, M. (2021). New UK guidance on hydraulic actions on highway structures and bridges. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 174(3), 231–238. doi:10.1680/jbren.20.00024
  • TDT. (1993). Texas secondary evaluation and analysis for scour (TSEAS). Austin, TX: Texas Bridge Scour Program, Texas Department of Transportation (TDT), Division of Bridges and Structures.
  • UNI TR 11634. (2016). Linee Guida per il monitoraggio strutturale. Retrieved from https://bit.ly/3o5pUUg (in Italian)
  • Vardanega, P. J., Gavriel, G., & Pregnolato, M. (2021). Assessing the suitability of bridge-scour-monitoring devices. Proceedings of the Institution of Civil Engineers – Forensic Engineering, 174(4), 105–117. doi:10.1680/jfoen.20.00022
  • Whitbread, J. E., Benn, J. R., & Hailes, J. M. (2000). Cost-effective management of scour-prone bridges. Proceedings of the Institution of Civil Engineers – Transport, 141(2), 79–86. doi:10.1680/tran.2000.141.2.79