Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 20, 2024 - Issue 3
723
Views
0
CrossRef citations to date
0
Altmetric
Article

Experimental investigation on the hysteretic dynamics of a regenerative hybrid electrodynamic cable damper

ORCID Icon, &
Pages 407-420 | Received 14 Mar 2021, Accepted 14 Mar 2022, Published online: 14 Jul 2022

References

  • Ao, W. K., & Reynolds, P. (2017). Analytical and experimental study of eddy current damper for vibration suppression in a footbridge structure. In J. Caicedo & S. Pakzad (Eds.), Dynamics of civil structures (Vol. 2, pp. 131–138). Conference Proceedings of the Society for Experimental Mechanics Series. Cham: Springer.
  • Bae, J. S., Hwang, J. H., Roh, J. H., Kim, J. H., Yi, M. S., & Lim, J. H. (2012). Vibration suppression of a cantilever beam using magnetically tuned-mass-damper. Journal of Sound and Vibration, 331(26), 5669–5684. doi:10.1016/j.jsv.2012.07.020
  • Cai, Q. L., & Zhu, S. (2019). Enhancing the performance of electromagnetic damper cum energy harvester using microcontroller: Concept and experiment validation. Mechanical Systems and Signal Processing, 134, 106339. doi:10.1016/j.ymssp.2019.106339
  • Casas, J. R., & Aparicio, A. C. (2010). Rain–wind-induced cable vibrations in the Alamillo cable-stayed bridge (Sevilla, Spain). Assessment and remedial action. Structure and Infrastructure Engineering, 6(5), 549–556. doi:10.1080/15732470903068607
  • Cho, J., & Lee, J. (2019, August 8). Structural/ground section of construction: Is the Angel Bridge, a cable-supported bridge, safe? Korea Temporary Equipment Association. https://www.gisulin.kr/news/view.html?section=1&category=5&item=&no=19702.
  • Chopra, A. K. (2007). Dynamics of structures (3rd ed.). Pearson Prentice Hall.
  • Cruze, D., Gladston, H., Farsangi, E. N., Loganathan, S., Dharmaraj, T., & Solomon, S. M. (2020). Development of a multiple coil magneto-rheological smart damper to improve the seismic resilience of building structures. The Open Civil Engineering Journal, 14(1), 78–93. doi:10.2174/1874149502014010078
  • Cu, V. H., Han, B., & Pham, D. H. (2017). Tuned mass-high damping rubber damper on a taut cable. KSCE Journal of Civil Engineering, 21(3), 928–936. doi:10.1007/s12205-016-0857-y
  • Ebrahimi, B., Khamesee, M. B., & Golnaraghi, F. (2009). A novel eddy current damper: Theory and experiment. Journal of Physics D: Applied Physics, 42(7), 075001. doi:10.1088/0022-3727/42/7/075001
  • Ebrahimi, B. (2009). Development of hybrid electromagnetic dampers for vehicle suspension systems [Doctoral dissertation, University of Waterloo]. UWSpace. https://uwspace.uwaterloo.ca/handle/10012/4375.
  • Elsaady, W., Oyadiji, S. O., & Nasser, A. (2020). A one-way coupled numerical magnetic field and CFD simulation of viscoplastic compressible fluids in MR dampers. International Journal of Mechanical Sciences, 167, 105265. doi:10.1016/j.ijmecsci.2019.105265
  • Frauenhofer, J., Grundmann, J., Klaus, G., & Nick, W. (2008). Basic concepts, status, opportunities, and challenges of electrical machines utilizing High-Temperature Superconducting (HTS) windings. Journal of Physics: Conference Series, 97(1), 012189.
  • Ge, C., & Chen, A. (2019). Vibration characteristics identification of ultra-long cables of a cable-stayed bridge in normal operation based on half-year monitoring data. Structure and Infrastructure Engineering, 15(12), 1567–1582. doi:10.1080/15732479.2019.1625416
  • Graves, K. E., Toncich, D., & Iovenitti, P. G. (2000). Theoretical comparison of motional and transformer EMF device damping efficiency. Journal of Sound and Vibration, 233(3), 441–453. doi:10.1006/jsvi.1999.2820
  • Huang, D., & Chen, W. (2019). Cable structures in bridge engineering. Journal of Bridge Engineering, 24(8), 02019001. doi:10.1061/(ASCE)BE.1943-5592.0001418
  • Huang, H., Sun, L., & Jiang, X. (2012). Vibration mitigation of stay cable using optimally tuned MR damper. Smart Structures and Systems, 9(1), 35–53. doi:10.12989/sss.2012.9.1.035
  • Javanmardi, A., Ghaedi, K., Huang, F., Hanif, M. U., & Tabrizikahou, A. (2021). Application of structural control systems for the cables of cable-stayed bridges: state-of-the-art and state-of-the-practice. Archives of Computational Methods in Engineering, 29, 1611–1641.
  • Jung, H. Y., Kim, I. H., & Jung, H. J. (2017). Feasibility study of the electromagnetic damper for cable structures using real-time hybrid simulation. Sensors, 17(11), 2499. doi:10.3390/s17112499
  • Jung, H. Y. (2018). Feasibility study of multifunctional electromagnetic damper for vibration control of cable and energy harvesting [Doctoral dissertation, Korea Advanced Institute of Science and Technology]. KAIST Library https://library.kaist.ac.kr/search/ctlgSearch/posesn/view.do?bibctrlno=734225&se=t0&ty=B&_csrf=5cd53dd6-abb5-433c-8c70-394d785e5fe9.
  • Kim, Y., Kye, S., Hwang, Y., & Jung, H. J. (2022). Experimental investigation on energy harvesting performance of regenerative hybrid electrodynamic damper. Sensors and Actuators A: Physical, 334, 113317. doi:10.1016/j.sna.2021.113317
  • Kim, S., Park, J., & Kim, H. K. (2017). Damping identification and serviceability assessment of a cable-stayed bridge based on operational monitoring data. Journal of Bridge Engineering, 22(3), 04016123. doi:10.1061/(ASCE)BE.1943-5592.0001004
  • Kim, G. Y., & Seo, D. W. (2018). Structural safety evaluation of cable stayed bridge based on cable damage scenarios. Journal of the Korea Academia-Industrial Cooperation Society, 19(7), 105–111.
  • Kye, S., & Jung, H. J. (2020). Characteristic test and electromagnetic analysis of regenerative hybrid electrodynamic damper for vibration mitigation and monitoring of stay cables. Applied Sciences, 10(17), 6078. doi:10.3390/app10176078
  • Kye, S., Jung, H. J., & Jung, H. Y. (2019). Experimental investigation on a cable structure equipped with an electrodynamic damper and its monitoring strategy through energy harvesting. Sensors, 19(11), 2631. doi:10.3390/s19112631
  • Kye, S. (2020). Regenerative hybrid electrodynamic damper for stay cable [Doctoral dissertation, Korea Advanced Institute of Science and Technology]. KAIST Library. https://library.kaist.ac.kr/search/ctlgSearch/posesn/view.do?bibctrlno=908380&se=t0&ty=B&_csrf=5cd53dd6-abb5-433c-8c70-394d785e5fe9.
  • Larsen, A., & Larose, G. L. (2015). Dynamic wind effects on suspension and cable-stayed bridges. Journal of Sound and Vibration, 334, 2–28. doi:10.1016/j.jsv.2014.06.009
  • Liu, Y., Qu, R., & Wang, J. (2013). Comparative analysis on superconducting direct-drive wind generators with iron teeth and air-gap winding. IEEE Transactions on Applied Superconductivity, 24(3), 1–5.
  • Li, J. Y., Zhu, S., & Shen, J. (2019). Enhance the damping density of eddy current and electromagnetic dampers. Smart Structures and Systems, 24(1), 15–26.
  • Li, J. Y., Zhu, S., Shi, X., & Shen, W. (2020). Electromagnetic shunt damper for bridge cable vibration mitigation: Full-scale experimental study. Journal of Structural Engineering, 146(1), 04019175. doi:10.1061/(ASCE)ST.1943-541X.0002477
  • Ma, H., Yan, B., Zhang, L., Zheng, W., Wang, P., & Wu, C. (2020). On the design of nonlinear damping with electromagnetic shunt damping. International Journal of Mechanical Sciences, 175, 105513. doi:10.1016/j.ijmecsci.2020.105513
  • Nakamura, Y., Hanzawa, T., Nomura, T., & Takada, T. (2016). Performance-based placement of manufactured viscoelastic dampers for design response spectrum. Frontiers in Built Environment, 2, 10. doi:10.3389/fbuil.2016.00010
  • Palomera-Arias, R., Connor, J. J., & Ochsendorf, J. A. (2008). Feasibility study of passive electromagnetic damping systems. Journal of Structural Engineering, 134(1), 164–170. doi:10.1061/(ASCE)0733-9445(2008)134:1(164)
  • Palomera-Arias, R. (2005). Passive electromagnetic damping device for motion control of building structures [Doctoral dissertation, Massachusetts Institute of Technology]. MIT’s DSpace. https://dspace.mit.edu/handle/1721.1/33174.
  • Pietrosanti, D., De Angelis, M., & Giaralis, A. (2020). Experimental study and numerical modeling of nonlinear dynamic response of SDOF system equipped with tuned mass damper inerter (TMDI) tested on shaking table under harmonic excitation. International Journal of Mechanical Sciences, 184, 105762. doi:10.1016/j.ijmecsci.2020.105762
  • Ribeiro, R., Asadi, E., Khamesee, M. B., & Khajepour, A. (2014). Hybrid variable damping control: Design, simulation, and optimization. Microsystem Technologies, 20(8-9), 1723–1732. doi:10.1007/s00542-014-2214-8
  • Shen, W., & Zhu, S. (2015). Harvesting energy via electromagnetic damper: Application to bridge stay cables. Journal of Intelligent Material Systems and Structures, 26(1), 3–19. doi:10.1177/1045389X13519003
  • Shen, W., Zhu, S., & Zhu, H. (2016). Experimental study on using electromagnetic devices on bridge stay cables for simultaneous energy harvesting and vibration damping. Smart Materials and Structures, 25(6), 065011. doi:10.1088/0964-1726/25/6/065011
  • Stabile, A., Aglietti, G. S., Richardson, G., & Smet, G. (2017). Design and verification of a negative resistance electromagnetic shunt damper for spacecraft micro-vibration. Journal of Sound and Vibration, 386, 38–49. doi:10.1016/j.jsv.2016.09.024
  • Sun, L., & Chen, L. (2015). Free vibrations of a taut cable with a general viscoelastic damper modeled by fractional derivatives. Journal of Sound and Vibration, 335, 19–33. doi:10.1016/j.jsv.2014.09.016
  • Tonoli, A., Amati, N., Bonfitto, A., Silvagni, M., Staples, B., & Karpenko, E. (2010). Design of electromagnetic dampers for aero-engine applications. Journal of Engineering for Gas Turbines and Power, 132(11), 112501. doi:10.1115/1.4000801
  • Tsai, N. C., & Chiang, C. W. (2010). Design and analysis of magnetically-drive actuator applied for linear compressor. Mechatronics, 20(5), 596–603. doi:10.1016/j.mechatronics.2010.06.001
  • Wang, H., He, C., Lv, S., & Sun, H. (2018). A new electromagnetic vibrational energy harvesting device for swaying cables. Applied Energy, 228, 2448–2461. doi:10.1016/j.apenergy.2018.07.059
  • Wang, Z. H., & Hua, G. P. (2013). Feasibility study of passive electromagnetic dampers for vibration control of stay cables. In Shunbo Zhao, Yi Min Xie, Handong Liu & Danying Gao (Eds.), Applied mechanics and materials (Vol. 438–439, pp. 1141–1144). Switzerland: Trans Tech Publications, Ltd.
  • Weber, F., & Boston, C. (2010). Energy based optimization of viscous–friction dampers on cables. Smart Materials and Structures, 19(4), 045025. doi:10.1088/0964-1726/19/4/045025
  • Woodson, H., & Melcher, J. (2009). RES.6-003 electromechanical dynamics. Massachusetts Institute of Technology, MIT OpenCourseWare.
  • Xu, Y. L. (2013). Wind effects on cable-supported bridges. John Wiley & Sons.
  • Xu, L., Bi, K., Gao, J. F., Xu, Y., & Zhang, C. (2020). Analysis on parameter optimization of dampers of long-span double-tower cable-stayed bridges. Structure and Infrastructure Engineering, 16(9), 1286–1301. doi:10.1080/15732479.2019.1703760
  • Xu, Z. D., Guo, Y. Q., Zhu, J. T., & Xu, F. H. (2016). Intelligent vibration control in civil engineering structures. Academic Press.
  • Zhang, H. Y., Chen, Z. Q., Hua, X. G., Huang, Z. W., & Niu, H. W. (2020). Design and dynamic characterization of a large-scale eddy current damper with enhanced performance for vibration control. Mechanical Systems and Signal Processing, 145, 106879. doi:10.1016/j.ymssp.2020.106879

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.