Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Latest Articles
1,232
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Probabilistic analysis of the impact of climate change on creep of concrete structures in Sweden

ORCID Icon
Received 31 Jan 2022, Accepted 25 Jul 2022, Published online: 07 Nov 2022

References

  • ACI. (1992). Prediction of creep, shrinkage and temperature effects in concrete structures ACI 209R-92 (minor update of original 1971 version). Farmington Hills, MI: American Concrete Institute.
  • Alfieri, L., Burek, P., Feyen, L., & Forzieri, G. (2015). Global warming increases the frequency of river floods in Europe. Hydrology and Earth System Sciences, 19(5), 2247–2260. doi:10.5194/hess-19-2247-2015
  • Arockiasamy, M., Butrieng, N., & Sivakumar, M. (2004). State of the art of integral abutment bridges: Design and practice. Journal of Bridge Engineering, 9(5), 497–506. doi:10.1061/(ASCE)1084-0702(2004)9:5(497)
  • Bastidas-Arteaga, E., & Stewart, M. G. (2015a). Damage risks and economic assessment of climate adaptation strategies for design of new concrete structures subject to chloride-induced corrosion. Structural Safety, 52, 40–53. doi:10.1016/j.strusafe.2014.10.005
  • Bastidas-Arteaga, E., & Stewart, M. G. (2015b). Economic assessment of climate adaptation strategies for existing reinforced concrete structures subjected to chloride-induced corrosion. Structure and Infrastructure Engineering, 12(4), 432–449. doi:10.1080/15732479.2015.1020499
  • Bažant, Z. P., & Baweja, S. (2000). Creep and shrinkage prediction model for analysis and design of concrete structures: Model B3. In The Adam Neville Symposium: Creep and Shrinkage—Structural Design Effects, Farmington Hills, MI, USA.
  • Bažant, Z. P., Hubler, M. H., & Wendner, R. (2015). RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of cocrete: material model and structural analysis—Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decade applicability. Materials and Structures, 48, 753–770.
  • Bažant, Z. P., Hubler, M. H., & Yu, Q. (2011). Pervasiveness of excessive segmental bridge deflections: Wake-up call for creep. ACI Structural Journal, 108(6), 766–774.
  • Bažant, Z. P., Yu, Q., & Li, G.-H. (2012). Excessive long-time deflections of prestressed box girders. II: Numerical analysis and lessons learned. Journal of Structural Engineering, 138(6), 687–696. doi:10.1061/(ASCE)ST.1943-541X.0000375
  • Bell, V. A., Kay, A. L., Davies, H. N., & Jones, R. G. (2016). An assessment of the possible impacts of climate change on snow and peak river flows across Britain. Climatic Change, 136(3–4), 539–553. doi:10.1007/s10584-016-1637-x
  • Capellán-Pérez, I., Arto, I., Polanco-Martínez, J. M., González-Eguino, M., & Neumann, M. B. (2016). Likelihood of climate change pathways under uncertainty on fossil fuel resource availability. Energy & Environmental Science, 9(8), 2482–2496. doi:10.1039/C6EE01008C
  • Chateauneuf, A. M., Raphael, W. E., & Moutou Pitti, R. J. B. (2014). Reliability of prestressed concrete structures considering creep models. Structure and Infrastructure Engineering, 10(12), 1595–1605. doi:10.1080/15732479.2013.835831
  • Diamantidis, D., Madsen, H. O., & Rackwitz, R. (1984). On the variability of the creep coefficient of structural concrete. Matériaux et Constructions, 17(4), 321–328. doi:10.1007/BF02479090
  • Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., & Liebert, J. (2012). Should we apply bias correction to global and regional climate model data? Hydrology and Earth System Sciences, 16(9), 3391–3404. doi:10.5194/hess-16-3391-2012
  • EN1992. (2004). Eurocode 2-design of concrete structures – Part 1-1: General rules and rules for buildings. Part 2: Concrete bridges. Brussels, Belgium: European Committee for Standardization.
  • FIB. (1999). Structural concrete: Textbook on behaviour, design and performance, updated knowledge of the CEB/FIP model Code 1990, Bulletin No. 2. Lausanne, Switzerland: Federation internationale du beton (FIB).
  • FIB. (2010). Model code 2010. Lausanne, Switzerland: Federation internationale du beton.
  • Gardner, N. J., & Lockman, M. J. (2001). Design provisions of shrinkage and creep of normal-strength concrete. ACI Materials Journal, 98, 159–167.
  • Gifford, R. (2011). The dragons of inaction: Psychological barriers that limit climate change mitigation and adaptation. The American Psychologist, 66(4), 290–302. 10.1037/a0023566.
  • Guo, T., Sause, R., Frangopol, D. M., & Li, A. (2011). Time-dependent reliability of PSC box-girder bridge considering creep, shrinkage, and corrosion. Journal of Bridge Engineering, 16(1), 29–43. doi:10.1061/(ASCE)BE.1943-5592.0000135
  • IPCC. (2013). Climate change 2013: The physical science basis – Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge & New York: Cambridge University Press.
  • IPCC. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge & New York: Cambridge University Press.
  • IPCC. (2022). Climate Change 2022: Impacts, adaptation, and vulnerability-Working Group II contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge & New York: Cambridge University Press.
  • Kallias, A. N., & Imam, B. (2016). Probabilistic assessment of local scour in bridge piers under changing environmental conditions. Structure and Infrastructure Engineering, 12(9), 1228–1241. doi:10.1080/15732479.2015.1102295
  • Keitel, H., & Dimmig-Osburg, A. (2010). Uncertainty and sensitivity analysis of creep models for uncorrelated and correlated input parameters. Engineering Structures, 32(11), 3758–3767. doi:10.1016/j.engstruct.2010.08.020
  • Kjellstrom, E., Barring, L., Nikulin, G., Nilsson, C., Persson, G., & Strandberg, G. (2016). Production and use of regional climate model projections – A Swedish perspective on building climate services. Climate Services, 2-3, 15–29. 10.1016/j.cliser.2016.06.004.
  • Li, C. Q., & Melchers, R. E. (1992). Reliability analysis of creep and shrinkage effects. Journal of Structural Engineering, 118(9), 2323–2337. doi:10.1061/(ASCE)0733-9445(1992)118:9(2323)
  • Luke, A. (2018). Preparing for what? Design floods and environmental change [Doctoral dissertation]. University of California Irvine. https://escholarship.org/uc/item/4m2428qd.
  • Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutiérrez, J. M., Hagemann, S., Richter, I., Soares, P. M. M., Hall, A., & Mearns, L. O. (2017). Towards process-informed bias correction of climate change simulations. Nature Climate Change, 7(11), 764–773. doi:10.1038/nclimate3418
  • Mazzotti, C., & Buratti, N. (2021). A design oriented fibre-based model for simulating the long-term behaviour of RC beams: Application to beams cast in different stages. Journal of Building Engineering, 44, 103176. doi:10.1016/j.jobe.2021.103176
  • Merschman, E., Salman, A. M., Bastidas-Arteaga, E., & Li, Y. (2020). Assessment of the effectiveness of wood pole repair using FRP considering the impact of climate change on decay and hurricane risk. Advances in Climate Change Research, 11(4), 332–348. doi:10.1016/j.accre.2020.10.001
  • Moragaspitiya, P., Thambiratnam, D., Perera, N., & Chan, T. (2010). A numerical method to quantify differential axial shortening in concrete buildings. Engineering Structures, 32(8), 2310–2317. doi:10.1016/j.engstruct.2010.04.006
  • Mortagi, M., & Ghosh, J. (2022). Concurrent modelling of carbonation and chloride-induced deterioration and uncertainty treatment in aging bridge fragility assessment. Structure and Infrastructure Engineering, 18(2), 197–218. doi:10.1080/15732479.2020.1838560
  • Nasr, A., Björnsson, I., Honfi, D., Larsson Ivanov, O., Johansson, J., & Kjellström, E. (2021). A review of the potential impacts of climate change on the safety and performance of bridges. Sustainable and Resilient Infrastructure, 6(3–4), 192–212. doi:10.1080/23789689.2019.1593003
  • Nasr, A., Honfi, D., & Larsson Ivanov, O. (2022). Probabilistic analysis of climate change impact on chloride-induced deterioration of reinforced concrete considering Nordic climate. Journal of Infrastructure Preservation and Resilience, 3(1), 1–16. doi:10.1186/s43065-022-00053-6
  • Nasr, A., Larsson Ivanov, O., Björnsson, I., Johansson, J., & Honfi, D. (2021). Towards a conceptual framework for built infrastructure design in an uncertain climate: Challenges and research needs. Sustainability, 13(21), 11827. doi:10.3390/su132111827
  • Nasr, A., Niklewski, J., Björnsson, I., & Johansson, J. (2022). Probabilistic analysis of climate change impact on fungal decay of timber elements in ground contact and their long-term structural performance. Wood Material Science & Engineering, 1–13. doi:10.1080/17480272.2022.2057813
  • Nguyen, M. N., Wang, X., & Leicester, R. H. (2013). An assessment of climate change effects on atmospheric corrosion rates of steel structures. Corrosion Engineering, Science and Technology, 48(5), 359–369. doi:10.1179/1743278213Y.0000000087
  • Peng, L., & Stewart, M. G. (2014a). Climate change and corrosion damage risks for reinforced concrete infrastructure in China. Structure and Infrastructure Engineering, 12(4), 499–516. doi:10.1080/15732479.2013.858270
  • Peng, L., & Stewart, M. G. (2014b). Spatial time-dependent reliability analysis of corrosion damage to RC structures with climate change. Magazine of Concrete Research, 66(22), 1154–1169. doi:10.1680/macr.14.00098
  • Piotrowski, A. P., Osuch, M., & Napiorkowski, J. J. (2021). Influence of the choice of stream temperature model on the projections of water temperature in rivers. Journal of Hydrology, 601, 126629. doi:10.1016/j.jhydrol.2021.126629
  • Ritchie, J., & Dowlatabadi, H. (2017). The 1000 gtc coal question: Are cases of vastly expanded future coal combustion still plausible? Energy Economics, 65, 16–31. doi:10.1016/j.eneco.2017.04.015
  • Rüsch, H., Jungwirth, D., & Hilsdorf, H. K. (1983). Creep and shrinkage: Their effect on the behavior of concrete structures. New York: Springer-Verlag.
  • Ryan, P. C., & Stewart, M. G. (2021). Regional variability of climate change adaptation feasibility for timber power poles. Structure and Infrastructure Engineering, 17(4), 579–589. doi:10.1080/15732479.2020.1843505
  • Samra, R. M. (1995). New analysis for creep behavior in concrete columns. Journal of Structural Engineering, 121(3), 399–407. doi:10.1061/(ASCE)0733-9445(1995)121:3(399)
  • Santillán, D., Salete, E., & Toledo, M. Á. (2015). A methodology for the assessment of the effect of climate change on the thermal-strain–stress behaviour of structures. Engineering Structures, 92, 123–141. doi:10.1016/j.engstruct.2015.03.001
  • Sellier, A., Multon, S., Buffo-Lacarrière, L., Vidal, T., Bourbon, X., & Camps, G. (2016). Concrete creep modelling for structural applications: Non-linearity, multi-axiality, hydration, temperature and drying effects. Cement and Concrete Research, 79, 301–315. doi:10.1016/j.cemconres.2015.10.001
  • Sousa, M. L., Dimova, S., Athanasopoulou, A., Rianna, G., Mercogliano, P., Villani, V., Nogal, M., Gervasio, H., Neves, L., Bastidas-Arteaga, E., & Tsionis, G. (2020). Expected implications of climate change on the corrosion of structures (Report No. EUR 30303 EN). JRC Technical Report Publications Office of the European Union. https://publications.jrc.ec.europa.eu/repository/handle/JRC121312.
  • Stewart, M. G., Wang, X., & Nguyen, M. N. (2011). Climate change impact and risks of concrete infrastructure deterioration. Engineering Structures, 33(4), 1326–1337. doi:10.1016/j.engstruct.2011.01.010
  • Takács, P. F. (2002). Deformations in concrete cantilever bridges: Observations and theoretical modelling [Doctoral dissertation]. The Norwegian University of Science and Technology. https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/231135.
  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498. doi:10.1175/BAMS-D-11-00094.1
  • Tu, B., Fang, Z., Dong, Y., & Frangopol, D. M. (2017). Time-variant reliability analysis of widened deteriorating prestressed concrete bridges considering shrinkage and creep. Engineering Structures, 153, 1–16. doi:10.1016/j.engstruct.2017.09.060
  • Val, D. V., Stewart, M. G., & Melchers, R. E. (1998). Effect of reinforcement corrosion on reliability of highway bridges. Engineering Structures, 20(11), 1010–1019. doi:10.1016/S0141-0296(97)00197-1
  • van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1–2), 5–31. doi:10.1007/s10584-011-0148-z
  • Wendner, R., Hubler, M. H., & Bažant, Z. P. (2015). Statistical justification of model B4 for multi-decade concrete creep using laboratory and bridge databases and comparisons to other models. Materials and Structures, 48(4), 815–833. doi:10.1617/s11527-014-0486-1
  • Yang, D. Y., & Frangopol, D. M. (2019). Physics-based assessment of climate change impact on long-term regional bridge scour risk using hydrologic modeling: Application to Lehigh River watershed. Journal of Bridge Engineering, 24(11), 1–13. doi:10.1061/(ASCE)BE.1943-5592.0001462
  • Zhang, Y., Ayyub, B. M., & Fung, J. F. (2022). Projections of corrosion and deterioration of infrastructure in United States coasts under a changing climate. Resilient Cities and Structures, 1(1), 98–109. doi:10.1016/j.rcns.2022.04.004