Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 20, 2024 - Issue 9
366
Views
2
CrossRef citations to date
0
Altmetric
Articles

Predicting seismic damage on concrete gravity dams: a review

ORCID Icon & ORCID Icon
Pages 1354-1373 | Received 16 Mar 2022, Accepted 14 Jul 2022, Published online: 08 Nov 2022

References

  • Akköse, M., & Şimşek, E. (2010). Non-linear seismic response of concrete gravity dams to near-fault ground motions including dam-water-sediment-foundation interaction. Applied Mathematical Modelling, 34(11), 3685–3700. doi:10.1016/j.apm.2010.03.019
  • Akpinar, U., Aldemir, A., & Binici, B. (2013). Different analysis strategies for roller compacted concrete dam design. In A. Öchsner, L. da Silva, & H. Altenbach (Eds.), Design and analysis of materials and engineering structures. Advanced structured materials (pp. 117–134). Berlin, Heidelberg: Springer.
  • Aldemir, A. (2016). Seismic performance evaluation of roller compacted concrete gravity dams by pseudo dynamic testing. (Doctoral dissertation). Middle East Technical University. http://etd.lib.metu.edu.tr/upload/12620238/index.pdf.
  • Alembagheri, M., & Ghaemian, M. (2013). Seismic assessment of concrete gravity dams using capacity estimation and damage indexes. Earthquake Engineering & Structural Dynamics, 42(1), 123–144. doi:10.1002/eqe.2196
  • Alembagheri, M., & Seyedkazemi, M. (2015). Seismic performance sensitivity and uncertainty analysis of gravity dams. Earthquake Engineering & Structural Dynamics, 44(1), 41–58. doi:10.1002/eqe.2457
  • Altarejos-Garcia, L., Escuder-Bueno, I., Serrano-Lombillo, A., & Membrillera-Ortuno, M. G. (2012). Methodology for estimating the probability of failure by sliding in concrete gravity dams in the context of risk analysis. Structural Safety, 3637, 1–13. doi:10.1016/j.strusafe.2012.01.001
  • Ansari, M. I., & Agarwal, P. (2016). Categorization of damage index of concrete gravity dam for the health monitoring after earthquake. Journal of Earthquake Engineering, 20(8), 1222–1238. doi:10.1080/13632469.2016.1138167
  • Arabshahi, H., & Lotfi, V. (2008). Earthquake response of concrete gravity dams including dam-foundation interface nonlinearities. Engineering Structures, 30(11), 3065–3073. doi:10.1016/j.engstruct.2008.04.018
  • Arici, Y., Binici, B., & Aldemir, A. (2014). Comparison of the expected damage patterns from two- and three-dimensional nonlinear dynamic analyses of a roller compacted concrete dam. Structure and Infrastructure Engineering, 10(3), 305–315. doi:10.1080/15732479.2012.753921
  • Ayari, M. L. (1988). Static and dynamic fracture mechanics of concrete gravity dams. (Doctoral dissertation). University of Colorado at Boulder. https://www.proquest.com/docview/303694375?pq-origsite=gscholar&fromopenview=true.
  • Ayari, M. L., & Saouma, V. (1990). A fracture mechanics approach seismic analysis of concrete gravity dams using discrete cracks. Engineering Fracture Mechanics, 35(13), 587–598. doi:10.1016/0013-7944(90)90233-7
  • Barenblatt, G. I. (1959). Concerning equilibrium cracks forming during brittle fracture. The stability of isolated cracks. Relationships with energetic theories. Journal of Applied Mathematics and Mechanics, 23(5), 1273–1282. doi:10.1016/0021-8928(59)90130-3
  • Basu, U., & Chopra, A. K. (2003). Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation. Computer Methods in Applied Mechanics and Engineering, 192(1112), 1337–1375. doi:10.1016/S0045-7825(02)00642-4
  • Batta, V., & Pekau, O. (1996). Application of boundary element analysis for multiple seismic cracking in concrete gravity dams. Earthquake Engineering & Structural Dynamics, 25(1), 15–30. doi:10.1002/(SICI)1096-9845(199601)25:1<15::AID-EQE533>3.0.CO;2-O
  • Bazant, Z. P., & Cedolin, L. (1979). Blunt crack band propagation in finite element analysis. Journal of the Engineering Mechanics Division, 105(2), 297–315. doi:10.1061/JMCEA3.0002467
  • Bažant, Z. P., Tabbara, M. R., Kazemi, M. T., & Pijaudier‐Cabot, G. (1990). Random particle model for fracture of aggregate or fiber composites. Journal of Engineering Mechanics, 116(8), 1686–1705. doi:10.1061/(ASCE)0733-9399(1990)116:8(1686)
  • Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5), 601–620. doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  • Bernier, C., Padgett, J. E., Proulx, J., & Paultre, P. (2016). Seismic fragility of concrete gravity dams with spatial variation of angle of friction: case study. Journal of Structural Engineering, 142(5), 05015002. doi:10.1061/(ASCE)ST.1943-541X.0001441
  • Bhattacharjee, S. S., & Léger, P. (1993). Seismic cracking and energy dissipation in concrete gravity dams. Earthquake Engineering & Structural Dynamics, 22(11), 991–1007. doi:10.1002/eqe.4290221106
  • Bhattacharjee, S. S., & Léger, P. (1994). Application of NLFM models to predict cracking in concrete gravity dams. Journal of Structural Engineering, 120(4), 1255–1271. doi:10.1061/(ASCE)0733-9445(1994)120:4(1255)
  • Bouaanani, N., & Lu, F. Y. (2009). Assessment of potential-based fluid finite elements for seismic analysis of dam-reservoir systems. Computers & Structures, 87(34), 206–224. doi:10.1016/j.compstruc.2008.10.006
  • Bybordiani, M., & Arici, Y. (2017). The use of 3D modeling for the prediction of the seismic demands on the gravity dams. Earthquake Engineering & Structural Dynamics, 46(11), 1769–1789. doi:10.1002/eqe.2880
  • Calayir, Y., & Karaton, M. (2005a). A continuum damage concrete model for earthquake analysis of concrete gravity dam-reservoir systems. Soil Dynamics and Earthquake Engineering, 25(11), 857–869. doi:10.1016/j.soildyn.2005.05.003
  • Calayir, Y., & Karaton, M. (2005b). Seismic fracture analysis of concrete gravity dams including dam-reservoir interaction. Computers & Structures, 83(1920), 1595–1606. doi:10.1016/j.compstruc.2005.02.003
  • Carvajal, C., Peyras, L., Bacconnet, C., & Bécue, J.-P. (2009). Probability modelling of shear strength parameters of RCC gravity dams for reliability analysis of structural safety. European Journal of Environmental and Civil Engineering, 13(1), 91–119. doi:10.1080/19648189.2009.9693087
  • Cervera, M., & Chiumenti, M. (2006). Smeared crack approach: back to the original track. International Journal for Numerical and Analytical Methods in Geomechanics, 30(12), 1173–1199. doi:10.1002/nag.518
  • Cervera, M., Chiumenti, M., Benedetti, L., & Codina, R. (2015). Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: Compressible and incompressible plasticity. Computer Methods in Applied Mechanics and Engineering, 285, 752–775. doi:10.1016/j.cma.2014.11.040
  • Cervera, M., Oliver, J., & Faria, R. (1995). Seismic evaluation of concrete dams via continuum damage models. Earthquake Engineering & Structural Dynamics, 24(9), 1225–1245. doi:10.1002/eqe.4290240905
  • Cervera, M., Oliver, J., & Manzoli, O. (1996). A rate-dependent isotropic damage model for the seismic analysis of concrete dams. Earthquake Engineering & Structural Dynamics, 25(9), 987–1010. doi:10.1002/(SICI)1096-9845(199609)25:9<987::AID-EQE599>3.0.CO;2-X
  • Chàvez, J. W., & Fenves, G. L. (1995). Earthquake response of concrete gravity dams including base sliding. Journal of Structural Engineering, 121(5), 865–875. doi:10.1061/(ASCE)0733-9445(1995)121:5(865)
  • Chen, D. H., Yang, Z. H., Wang, M., & Xie, J. H. (2019). Seismic performance and failure modes of the Jin’anqiao concrete gravity dam based on incremental dynamic analysis. Engineering Failure Analysis, 100, 227–244. doi:10.1016/j.engfailanal.2019.02.018
  • Chen, H. Q. (2020). Seismic safety analysis of tall concrete dams, investigation and insights on critical challenges. Earthquake Engineering and Engineering Vibration, 19(3), 533–539. doi:10.1007/s11803-020-0578-6
  • Chen, H. Q., Li, D. Y., & Guo, S. S. (2014). Damage-rupture process of concrete dams under strong earthquakes. International Journal of Structural Stability and Dynamics, 14(07), 1450021–1450021. doi:10.1142/S0219455414500217
  • Chinese National Committee on Large Dams. (2010, July 20). China’s highest dams. Retrieved from http://www.chincold.org.cn/dams/DamInformation/damsinchina/webinfo/2010/07/1279253973917784.htm
  • Chopra, A. K. (2012). Earthquake analysis of arch dams: factors to be considered. Journal of Structural Engineering, 138(2), 205–214. doi:10.1061/(ASCE)ST.1943-541X.0000431
  • Chopra, A. K. (2020). Earthquake engineering for concrete dams: analysis, design and evaluation. Hoboken, NJ: Wiley-Blackwell.
  • Chopra, A. K., & Chakrabarti, P. (1973). The Koyna earthquake and the damage to the Koyna dam. Bulletin of the Seismological Society of America, 63(2), 381–397. doi:10.1785/BSSA0630020381
  • Chopra, A. K., & Zhang, L. (1991). Earthquake-induced base sliding of concrete gravity dams. Journal of Structural Engineering, 117(12), 3698–3719. doi:10.1061/(ASCE)0733-9445(1991)117:12(3698)
  • Cornelissen, H. A. W., Hordijk, D. A., & Reinhardt, H. W. (1986). Experimental determination of crack softening characteristics of normalweight and lightweight concrete. Heron, 31(2), 45–56.
  • Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. doi:10.1680/geot.1979.29.1.47
  • Das, R., & Cleary, P. W. (2013). A mesh-free approach for fracture modelling of gravity dams under earthquake. International Journal of Fracture, 179(12), 9–33. doi:10.1007/s10704-012-9766-3
  • Dias, I. F., Oliver, J., Lemos, J. V., & Lloberas-Valls, O. (2016). Modeling tensile crack propagation in concrete gravity dams via crack-path-field and strain injection techniques. Engineering Fracture Mechanics, 154, 288–310. doi:10.1016/j.engfracmech.2015.12.028
  • Duarte, C. A., Babuska, I., & Oden, J. T. (2000). Generalized finite element methods for three-dimensional structural mechanics problems. Computers & Structures, 77(2), 215–232. doi:10.1016/S0045-7949(99)00211-4
  • Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100–104. doi:10.1016/0022-5096(60)90013-2
  • Dumstorff, P., & Meschke, G. (2007). Crack propagation criteria in the framework of X-FEM-based structural analyses. International Journal for Numerical and Analytical Methods in Geomechanics, 31(2), 239–259. doi:10.1002/nag.560
  • El‐Aidi, B., & Hall, J. F. (1989). Non‐linear earthquake response of concrete gravity dams part 1: Modelling. Earthquake Engineering & Structural Dynamics, 18(6), 837–851. doi:10.1002/eqe.4290180607
  • Elruby, A. Y., Nakhla, S., & Hussein, A. (2018). Automating XFEM modeling process for optimal failure predictions. Mathematical Problems in Engineering, 2018, 1–14. doi:10.1155/2018/1654751
  • Federal Energy Regulatory Commission. (2016). Engineering guidelines for the evaluation of hydropower projects. Chapter 3 Gravity Dams. Retrieved from https://www.ferc.gov/industries-data/hydropower/dam-safety-and-inspections/eng-guidelines
  • Feenstra, P. H., Rots, J. G., Arnesen, A., Teigen, J. G., & Høiseth, K. V. (1998). A 3D constitutive model for concrete based on a co-rotational concept. In B. B. R. de Borst (Ed.), Proceedings of the Euro-C 1998 Conference on Computational Modelling of Concrete Structures, Badgastein, Austria, 31 March3 April (pp. 13–22). Brookfield, Rotterdam.
  • Fenves, G., & Chopra, A. K. (1984a). Earthquake analysis and response of concrete gravity dams (Report No. UCB/EERC-84/10). Earthquake Engineering Research Center, University of California, Berkeley, USA.
  • Fenves, G., & Chopra, A. K. (1984b). Earthquake analysis of concrete gravity dams including reservoir bottom absorption and dam-water-foundation rock interaction. Earthquake Engineering & Structural Dynamics, 12(5), 663–680. doi:10.1002/eqe.4290120507
  • Ftima, M. B., & Léger, P. (2006). Seismic stability of cracked concrete dams using rigid block models. Computers & Structures, 84(28), 1802–1814. doi:10.1016/j.compstruc.2006.04.012
  • Furgani, L., Imperatore, S., & Nuti, C. (2012, September 24-28). Seismic assessment methods for concrete gravity dams. Paper presented at the 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
  • Ghaedi, K., Hejazi, F., Ibrahim, Z., & Khanzaei, P. (2018). Flexible foundation effect on seismic analysis of roller compacted concrete (RCC) dams using finite element method. KSCE Journal of Civil Engineering, 22(4), 1275–1287. doi:10.1007/s12205-017-1088-6
  • Ghaedi, K., Jameel, M., Ibrahim, Z., & Khanzaei, P. (2016). Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of sizes and shapes of galleries. KSCE Journal of Civil Engineering, 20(1), 261–272. doi:10.1007/s12205-015-0538-2
  • Ghaemian, M., & Ghobarah, A. (1999). Nonlinear seismic response of concrete gravity dams with dam-reservoir interaction. Engineering Structures, 21(4), 306–315. doi:10.1016/S0141-0296(97)00208-3
  • Ghallab, A. (2020). Simulation of cracking in high concrete gravity dam using the extended finite elements by ABAQUS. American Journal of Mechanics and Applications, 8(1), 7–15. doi:10.11648/j.ajma.20200801.12
  • Ghanaat, Y. (2004, August 1–6). Failure modes approach to safety evaluation of dams. Paper presented at the 13th World Conference on Earthquake Engineering, Vancouver, British Columbia, Canada.
  • Ghrib, F., & Tinawi, R. (1995). An application of damage mechanics for seismic analysis of concrete gravity dams. Earthquake Engineering & Structural Dynamics, 24(2), 157–173. doi:10.1002/eqe.4290240203
  • Givoli, D. (2008). Computational absorbing boundaries. In S. Marburg & B. Nolte (Eds.), Computational acoustics of noise Propagation in fluids - finite and boundary element methods (pp. 145–166). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-77448-8_6
  • Guanglun, W., Pekau, O. A., Chuhan, Z., & Shaomin, W. (2000). Seismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanics. Engineering Fracture Mechanics, 65(1), 67–87. doi:10.1016/S0013-7944(99)00104-6
  • Hariri-Ardebili, M. A., & Saouma, V. (2015). Quantitative failure metric for gravity dams. Earthquake Engineering & Structural Dynamics, 44(3), 461–480. doi:10.1002/eqe.2481
  • Hariri-Ardebili, M. A., & Saouma, V. (2016a). Collapse fragility curves for concrete dams: comprehensive study. Journal of Structural Engineering, 142(10), 04016075. doi:10.1061/(ASCE)ST.1943-541X.0001541
  • Hariri-Ardebili, M. A., & Saouma, V. (2016b). Probabilistic seismic demand model and optimal intensity measure for concrete dams. Structural Safety, 59, 67–85. doi:10.1016/j.strusafe.2015.12.001
  • Hariri-Ardebili, M. A., Saouma, V. E., & Porter, K. A. (2016). Quantification of seismic potential failure modes in concrete dams. Earthquake Engineering & Structural Dynamics, 45(6), 979–997. doi:10.1002/eqe.2697
  • Hariri-Ardebili, M. A., & Seyed-Kolbadi, S. M. (2015). Seismic cracking and instability of concrete dams: Smeared crack approach. Engineering Failure Analysis, 52, 45–60. doi:10.1016/j.engfailanal.2015.02.020
  • Hariri-Ardebili, M. A., Seyed-Kolbadi, S. M., & Kianoush, M. R. (2016). FEM-based parametric analysis of a typical gravity dam considering input excitation mechanism. Soil Dynamics and Earthquake Engineering, 84, 22–43. doi:10.1016/j.soildyn.2016.01.013
  • Hariri-Ardebili, M. A., Seyed-Kolbadi, S. M., Saouma, V. E., Salamon, J., & Rajagopalan, B. (2018). Random finite element method for the seismic analysis of gravity dams. Engineering Structures, 171, 405–420. doi:10.1016/j.engstruct.2018.05.096
  • Herzog, M. A. M. (1998). Practical dam analysis. London: Thomas Telford Publishing.
  • Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6), 773–781. doi:10.1016/0008-8846(76)90007-7
  • Horii, H., & Chen, S. C. (2003). Computational fracture analysis of concrete gravity dams by crack-embedded elements – Toward and engineering evaluation of seismic safety. Engineering Fracture Mechanics, 70(78), 1029–1045. doi:10.1016/S0013-7944(02)00164-9
  • Huang, J., & Zerva, A. (2014). Earthquake performance assessment of concrete gravity dams subjected to spatially varying seismic ground motions. Structure and Infrastructure Engineering, 10(8), 1011–1026. doi:10.1080/15732479.2013.782323
  • Javanmardi, F., Léger, P., & Tinawi, R. (2005). Seismic structural stability of concrete gravity dams considering transient uplift pressures in cracks. Engineering Structures, 27(4), 616–628. doi:10.1016/j.engstruct.2004.12.005
  • Jiang, S. Y., Du, C. B., & Yongwen, H. (2013). Failure analysis of a cracked concrete gravity dam under earthquake. Engineering Failure Analysis, 33, 265–280. doi:10.1016/j.engfailanal.2013.05.024
  • Karalar, M., & Cavusli, M. (2020). Seismic effects of epicenter distance of earthquake on 3D damage performance of CG dams. Earthquakes and Structures, 18(2), 201–213. doi:10.12989/eas.2020.18.2.201
  • Karalar, M., & Cavusli, M. (2021). Three dimensional seismic deformation-shear strain-swelling performance of America-California Oroville Earth-Fill Dam. Geomechanics and Engineering, 24(5), 443–456. doi:10.12989/gae.2021.24.5.443
  • Karalar, M., & Cavuslu, M. (2022). Determination of 3D near fault seismic behaviour of Oroville earth fill dam using burger material model and free field-quiet boundary conditions. Mathematical and Computer Modelling of Dynamical Systems, 28(1), 55–77. doi:10.1080/13873954.2022.2033274
  • Kartal, M. E., Çavuşli, M., & Geniş, M. (2019). 3D nonlinear analysis of Ataturk Clay Core Rockfill Dam considering settlement monitoring. International Journal of Geomechanics, 19(5), 1–13. doi:10.1061/(ASCE)GM.1943-5622.0001412
  • Kawai, T. (1986). Recent developments of the rigid body and spring model (RBSM) in structural analysis. In Seiken Seminar Text Book (pp. 226–237) Institute of Industrial Science, The University of Tokyo, Japan.
  • Khazaee, A., & Lotfi, V. (2014). Application of perfectly matched layers in transient analysis of dam-reservoir systems. Soil Dynamics and Earthquake Engineering, 60, 51–68. doi:10.1016/j.soildyn.2014.01.005
  • Kimata, H., Fujita, Y., Niimi, K., Niyamoto, D., Nakayama, K., & Ushida, Y. (2008, October 12–17) Seismic safety of concrete gravity dams based on dynamic crack propagation analysis during large-scale earthquakes. Paper presented at the 14th World Conference on Earthquake Engineering, Beijing, China.
  • Lee, J., & Fenves, G. L. (1998). A plastic-damage concrete model for earthquake analysis of dams. Earthquake Engineering & Structural Dynamics, 27(9), 937–956. doi:10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5
  • Léger, P., & Leclerc, M. (1996). Evaluation of earthquake ground motions to predict cracking response of gravity dams. Engineering Structures, 18(3), 227–239. doi:10.1016/0141-0296(95)00146-8
  • Léger, P., Stefan, L., & Leclerc, M. (2012, May 29–June 1). Numerical modelling strategies for safety assessment and rehabilitation of concrete dams. Paper presented at the Numerical Modeling Strategies for Sustainable Concrete Structures, Aix-en-Provence, France.
  • Li, W., Wu, W., & Zhang, J. (2022). Numerical stability analysis of the dam foundation under complex geometrical conditions at greater depth: A case study of Kala Hydropower Station. Frontiers in Physics, 9, 808840. doi:10.3389/fphy.2021.808840
  • Li, Y., Zhong, H., Pang, L., & Hu, Z. (2019). Influence of the water pressure distribution along crack faces on seismic fracture modeling of a dam-reservoir-foundation system. Engineering Analysis with Boundary Elements, 101, 252–269. doi:10.1016/j.enganabound.2019.01.002
  • Løkke, A., & Chopra, A. K. (2017). Direct finite element method for nonlinear analysis of semi-unbounded dam-water-foundation rock systems. Earthquake Engineering & Structural Dynamics, 46(8), 1267–1285. doi:10.1002/eqe.2855
  • Løkke, A., & Chopra, A. K. (2019). Direct finite element method for nonlinear earthquake analysis of concrete dams: Simplification, modeling and practical application. Earthquake Engineering & Structural Dynamics, 48(7), 818–842. doi:10.1002/eqe.3150
  • Long, Y., Zhang, C., & Xu, Y. (2009). Nonlinear seismic analyses of a high gravity dam with and without the presence of reinforcement. Engineering Structures, 31(10), 2486–2494. doi:10.1016/j.engstruct.2009.06.004
  • Lourenço, P. B., & Rots, J. G. (1997). A multi-surface interface model for the analysis of masonry structures. Journal of Engineering Mechanics, 123(7), 660–668. doi:10.1061/(ASCE)0733-9399(1997)123:7(660)
  • Lubliner, J., Oliver, J., Oller, S., & Onate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 299–326. doi:10.1016/0020-7683(89)90050-4
  • Lysmer, J., & Kuhlemeyer, R. L. (1969). Finite dynamic model for infinite media. Journal of the Engineering Mechanics Division, 95(4), 859–877. doi:10.1061/JMCEA3.0001144
  • Malm, R. (2009). Predicting shear type crack initiation and growth in concrete with non-linear finite element method. (Doctoral dissertation). KTH Royal Institute of Technology. http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A209582&dswid=9788.
  • Mansouri, A., Neshaei, M., & Aghajany, R. (2011). Fracture analysis of concrete gravity dam under earthquake induced loads. Journal of Applied Structural Equation Modeling, 15(2), 317–325. doi:10.4314/jasem.v15i2.68515
  • Mazars, J. (1984). Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure [Application of damage mechanics to the nonlinear behaviour and fracture of structural concrete]. (Doctoral Dissertation). Ecole Nationale des Ponts et Chaussées. https://pastel.archives-ouvertes.fr/tel-00529378/document
  • Mazloumi, A., Ghaemian, M., & Noorzad, A. (2012, June 5) Nonlinear seismic analysis of RCC Dam considering orthotropic behavior of layers. Paper presented at the International Symposium on Dams for a Changing World, Kyoto, Japan.
  • Medina, F., Dominguez, J., & Tassoulas, J. L. (1990). Response of dams to earthquake analysis including effects of sediments. Journal of Structural Engineering, 116(11), 3108–3121. doi:10.1061/(ASCE)0733-9445(1990)116:11(3108)
  • Meguro, K., & Tagel-Din, H. (2000). Applied element method for structural analysis: theory and application for linear materials. Structural Engineering/Earthquake Engineering JSCE, 17(1), 21s–225s.
  • Meschke, G., & Dumstorff, P. (2007). Energy-based modeling of cohesive and cohesionless cracks via X-FEM. Computer Methods in Applied Mechanics and Engineering, 196(2124), 2338–2357. doi:10.1016/j.cma.2006.11.016
  • Mirzabozorg, H., & Ghaemian, M. (2004). Nonlinear seismic response of concrete gravity dams using damage mechanics including dam-reservoir interaction. In M. Wieland, Q. Ren, & J. S. Y. Tan (Eds.), New Developments in Dam Engineering Proceedings of the 4th International Conference on Dam Engineering, 18-20 October (pp. 635–642). Nanjing, China: CRC Press.
  • Mirzabozorg, H., & Ghaemian, M. (2005). Non-linear behavior of mass concrete in three-dimensional problems using a smeared crack approach. Earthquake Engineering & Structural Dynamics, 34(3), 247–269. doi:10.1002/eqe.423
  • Mirzabozorg, H., & Kianoush, M. R. (2008, October 12–17) Seismic safety evaluation of concrete dams using damage mechanics approach. Paper presened at the 14th World Conference on Earthquake Engineering, Beijing, China.
  • Mirzabozorg, H., Kianoush, M. R., & Varmazyari, M. (2008, October 12–17) Traveling wave effects on nonlinear seismic behavior of concrete gravity dams. Paper presented at the 14th World Conference on Earthquake Engineering, Beijing, China.
  • Mirzayee, M., Khaji, N., & Ahmadi, M. T. (2011). A hybrid distinct element-boundary element approach for seismic analysis of cracked concrete gravity dam-reservoir systems. Soil Dynamics and Earthquake Engineering, 31(10), 1347–1356. doi:10.1016/j.soildyn.2011.05.011
  • Mlakar, P. F. (1987). Nonlinear response of concrete gravity dams to strong earthquake-induced ground motion. Computers & Structures, 26(12), 165–173. doi:10.1016/0045-7949(87)90246-X
  • Mosler, J. (2004). On the modeling of highly localized deformations induced by material failure: the strong discontinuity approach. Archives of Computational Methods in Engineering, 11(4), 389–446. doi:10.1007/BF02736230
  • Mosler, J., & Meschke, G. (2004). Embedded crack vs. smeared crack models: A comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias. Computer Methods in Applied Mechanics and Engineering, 193(3032), 3351–3375. doi:10.1016/j.cma.2003.09.022
  • Mridha, S., & Maity, D. (2014). Experimental investigation on nonlinear dynamic response of concrete gravity dam-reservoir system. Engineering Structures, 80, 289–297. doi:10.1016/j.engstruct.2014.09.017
  • Ngo, D., & Scordelis, A. C. (1967). Finite element analysis of reinforced concrete beams. Journal of ACI, 64(3), 152–163. doi:10.14359/7551
  • Nuss, L., Matsumoto, N., & Hansen, K. (2012). April 23-27). Shaken, but not stirred – earthquake performance of concrete dams. Paper presented at the 32nd USSD Annual Meeting and Conference, New Orleans, LA, USA.
  • Omidi, O., & Lotfi, V. (2013). Continuum large cracking in a rate-dependent plastic-damage model for cyclic-loaded concrete structures. International Journal for Numerical and Analytical Methods in Geomechanics, 37(10), 1363–1390. doi:10.1002/nag.2093
  • Omidi, O., Lotfi, V., & Valliappan, S. (2012). September 24-28). Plastic-damage analysis of Koyna Dam in different damping mechanisms with dam-water interaction. Paper presented at the 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
  • Omidi, O., Valliappan, S., & Lotfi, V. (2013). Seismic cracking of concrete gravity dams by plastic-damage model using different damping mechanisms. Finite Elements in Analysis and Design, 63, 80–97. doi:10.1016/j.finel.2012.08.008
  • Paggi, M., Ferro, G., & Braga, F. (2013). A multiscale approach for the seismic analysis of concrete gravity dams. Computers & Structures, 122, 230–238. doi:10.1016/j.compstruc.2013.03.006
  • Pan, J., Zhang, C., Xu, Y., & Jin, F. (2011). A comparative study of the different procedures for seismic cracking analysis of concrete dams. Soil Dynamics and Earthquake Engineering, 31(11), 1594–1606. doi:10.1016/j.soildyn.2011.06.011
  • Pekau, O. A., & Cui, Y. (2004). Failure analysis of fractured dams during earthquakes by DEM. Engineering Structures, 26(10), 1483–1502. doi:10.1016/j.engstruct.2004.05.019
  • Pelecanos, L. (2013). Seismic response and analysis of earth dams. (Doctoral Dissertation). Imperial College. https://spiral.imperial.ac.uk/handle/10044/1/23649
  • Pirboudaghi, S., Tarinejad, R., & Alami, M. T. (2018). Damage detection based on system identification of concrete dams using an extended finite element-wavelet transform coupled procedure. Journal of Vibration and Control, 24(18), 4226–4246. doi:10.1177/1077546317722428
  • Rabczuk, T. (2013). Computational methods for fracture in brittle and quasi-brittle solids: state-of-the-art review and future perspectives. ISRN Applied Mathematics, 2013, 1–38. doi:10.1155/2013/849231
  • Rashid, Y. R. (1968). Analysis of prestressed concrete pressure vessels. Nuclear Engineering and Design, 7(4), 334–344. doi:10.1016/0029-5493(68)90066-6
  • Rochon-Cyr, M., & Léger, P. (2009). Shake table sliding response of a gravity dam model including water uplift pressure. Engineering Structures, 31(8), 1625–1633. doi:10.1016/j.engstruct.2009.03.001
  • Roth, S. N., Léger, P., & Soulaïmani, A. (2015). A combined XFEM–damage mechanics approach for concrete crack propagation. Computer Methods in Applied Mechanics and Engineering, 283, 923–955. doi:10.1016/j.cma.2014.10.043
  • Roth, S. N., Léger, P., & Soulaïmani, A. (2020). Strongly coupled XFEM formulation for non-planar three-dimensional simulation of hydraulic fracturing with emphasis on concrete dams. Computer Methods in Applied Mechanics and Engineering, 363, 112899–112836. doi:10.1016/j.cma.2020.112899
  • Rots, J. G. (1988). Computational modeling of concrete fracture. (Doctoral dissertation). Delft University of Technology. https://repository.tudelft.nl/islandora/object/uuid:06985d0d-1230-4a08-924a-2553a171f08f?collection=research
  • Rots, J. G. (1991). Smeared and discrete representations of localized fracture. International Journal of Fracture, 51(1), 45–59. doi:10.1007/BF00020852
  • Saloustros, S., Pela, L., & Cervera, M. (2015). A crack-tracking technique for localized cohesive-frictional damage. Engineering Fracture Mechanics, 150, 96–114. doi:10.1016/j.engfracmech.2015.10.039
  • Saouma, V., Uchita, Y., & Yagome, Y. (2007, May 14–16). 3D nonlinear transient analysis of concrete dams. Paper presented at the 39th Joint Meeting on US-JAPAN Panel on Wind and Seismic Effects (UJNR), Task Committee C, Tsukuba, Japan.
  • Shi, Z. (2009). Crack analysis in structural concrete: theory and applications. Amsterdam: Elsevier/Butterworth Heinemann.
  • Silling, S. A. (2000). Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48(1), 175–209. doi:10.1016/S0022-5096(99)00029-0
  • Simo, J. C., Oliver, J., & Armero, F. (1993). An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Computational Mechanics, 12(5), 277–296. doi:10.1007/BF00372173
  • Skrikerud, P. E., & Bachmann, H. (1986). Discrete crack modelling for dynamically loaded, unreinforced concrete structures. Earthquake Engineering & Structural Dynamics, 14(2), 297–315. doi:10.1002/eqe.4290140209
  • Slowik, V., & Saouma, V. E. (2000). Water pressure in propagating concrete cracks. Journal of Structural Engineering, 126(2), 235–242. doi:10.1061/(ASCE)0733-9445(2000)126:2(235)
  • Slowik, V., Saouma, V. E., & Roh, Y. S. (1995). Transient fluid fracture interaction. In F. H. Wittmann (Ed.), Proceedings of 2nd International Conference on Fracture Mechanics of Concrete Structures (FRAMCOS 2) (pp. 251–260). Freiburg, Germany: Aedificatio Publishers.
  • Smith, M. (2012). ABAQUS (Version 6.12) [Computer software]. France: Dassault Systems.
  • Smith, O. (2018, August 21). Big dams, big damage: The growing risk of failure. Washington, DC: Wilson Center. https://www.newsecuritybeat.org/2018/08/big-dams-big-damage-growing-risk-failure/
  • Soysal, B. F., Binici, B., & Arici, Y. (2016). Investigation of the relationship of seismic intensity measures and the accumulation of damage on concrete gravity dams using incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 45(5), 719–737. doi:10.1002/eqe.2681
  • Soysal Albostan, B. F. (2021). Discrete element based analyses of structure-reservoir problem for gravity dams. (Doctoral dissertation). Middle East Technical University. https://open.metu.edu.tr/bitstream/handle/11511/89652/12626086.pdf
  • Sun, D., & Ren, Q. (2016). Seismic damage analysis of concrete gravity dam based on wavelet transform. Shock and Vibration, 2016, 1–8. doi:10.1155/2016/6841836
  • Tatalovich, J. (1998). Comparison of failure modes from risk assessment and historical data for Bureau of Reclamation Dams (Report No. DSO-98-01). U.S. Department of Interior, USBR, Dam Safety Office, USA.
  • Tekie, P. B., & Ellingwood, B. R. (2003). Seismic fragility assessment of concrete gravity dams. Earthquake Engineering & Structural Dynamics, 32(14), 2221–2240. doi:10.1002/eqe.325
  • Tinawi, R., & Guizani, L. (1994). Formulation of hydrodynamic pressures in cracks due to earthquakes in concrete dams. Earthquake Engineering & Structural Dynamics, 23(7), 699–715. doi:10.1002/eqe.4290230702
  • Tinawi, R., Léger, P., Leclerc, M., & Cipolla, G. (2000). Seismic safety of gravity dams: from shake table experiments to numerical analyses. Journal of Structural Engineering, 126(4), 518–529. doi:10.1061/(ASCE)0733-9445(2000)126:4(518)
  • US Army Corps of Engineers. (2000). Roller-compacted concrete (Report No. EM 1110-2-2006).
  • Valliappan, M., Yazdchi, M., & Khalili, N. (1996). Earthquake analysis of gravity dams based on damage mechanics concept. International Journal for Numerical and Analytical Methods in Geomechanics, 20(10), 725–751. doi:10.1002/(SICI)1096-9853(199610)20:10<725::AID-NAG843>3.0.CO;2-X
  • van Mier, J. G. M. (1997). Fracture process of concrete, assessment of material parameters for fracture models. Boca Rotan, FL: CRC Press.
  • Wang, G., Lu, W., & Zhang, S. (2020). Comparative analysis of nonlinear seismic response of concrete gravity dams using XFEM and CDP model. In Seismic Performance Analysis of Concrete Gravity Dams Advanced Topics in Science and Technology in China (pp. 11–51). Singapore: Springer. doi:10.1007/978-981-15-6194-8_2
  • Wang, G., Lu, W., Zhou, C., & Zhou, W. (2015a). The influence of initial cracks on the crack propagation process of concrete gravity dam-reservoir-foundation systems. Journal of Earthquake Engineering, 19(6), 991–1011. doi:10.1080/13632469.2015.1021407
  • Wang, G., Wang, Y., Lu, W., Yan, P., Zhou, W., & Chen, M. (2016). A general definition of integrated strong motion duration and its effect on seismic demands of concrete gravity dams. Engineering Structures, 125, 481–493. doi:10.1016/j.engstruct.2016.07.033
  • Wang, G., Wang, Y., Lu, W., Zhou, C., Chen, M., & Yan, P. (2015b). XFEM based seismic potential failure mode analysis of concrete gravity dam-water-foundation systems through incremental dynamic analysis. Engineering Structures, 98, 81–94. doi:10.1016/j.engstruct.2015.04.023
  • Wang, Y.-J., Wu, Z.-M., Qu, F.-M., & Zhang, W. (2022). Numerical investigation on crack propagation process of concrete gravity dams under static and dynamic loads with in-crack reservoir pressure. Theoretical and Applied Fracture Mechanics, 117, 103221. doi:10.1016/j.tafmec.2021.103221
  • Wu, J.-Y., & Cervera, M. (2018). A novel positive/negative projection in energy norm for the damage modeling of quasi-brittle solids. International Journal of Solids and Structures, 139140, 250–269. doi:10.1016/j.ijsolstr.2018.02.004
  • Wu, J.-Y., & Li, J. (2007). Unified plastic-damage model for concrete and its applications to dynamic nonlinear analysis of structures. Structural Engineering and Mechanics, 25(5), 519–540. doi:10.12989/sem.2007.25.5.519
  • Wu, Z., Rong, H., Zheng, J., & Dong, W. (2013). Numerical method for mixed-mode I-II crack propagation in concrete. Journal of Engineering Mechanics, 139(11), 1530–1538. doi:10.1061/(ASCE)EM.1943-7889.0000594
  • Zhang, S., Wang, G., Pang, B., & Du, C. (2013). The effects of strong motion duration on the dynamic response and accumulated damage of concrete gravity dams. Soil Dynamics and Earthquake Engineering, 45, 112–124. doi:10.1016/j.soildyn.2012.11.011
  • Zhang, S., Wang, G., & Sa, W. (2013). Damage evaluation of concrete gravity dams under mainshock–aftershock seismic sequences. Soil Dynamics and Earthquake Engineering, 50, 16–27. doi:10.1016/j.soildyn.2013.02.021
  • Zhang, S., Wang, G., & Yu, X. (2013). Seismic cracking analysis of concrete gravity dams with initial cracks using the extended finite element method. Engineering Structures, 56, 528–543. doi:10.1016/j.engstruct.2013.05.037
  • Zheng, X., Ma, J., & Li, F. (2018). Influence of material nonlinearity of foundation on seismic damage of Koyna Gravity Dam. Chemical Engineering Transactions, 66, 1093–1098. doi:10.3303/CET1866183
  • Zhong, H., Li, X. Y., & Lin, G. (2012). Analyses of failure modes-based seismic fragility of gravity dams. Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology, 52(1), 60–65.
  • Zhong, H., Lin, G., Li, X., & Li, J. (2011). Seismic failure modeling of concrete dams considering heterogeneity of concrete. Soil Dynamics and Earthquake Engineering, 31(12), 1678–1689. doi:10.1016/j.soildyn.2011.07.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.