Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 20, 2024 - Issue 1
478
Views
1
CrossRef citations to date
0
Altmetric
ARTICLE

Probabilistic structural identification and condition assessment of prestressed concrete bridges based on Bayesian inference using deflection measurements

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 131-147 | Received 25 Oct 2022, Accepted 08 Mar 2023, Published online: 31 Mar 2023

References

  • Bažant, Z. P., & Baweja, S. (1995). Creep and shrinkage prediction model for analysis and design of concrete structures: Model B3. Material and Structures, 28, 357–365. doi:10.1007/BF02473152
  • Bažant, Z. P., & Chern, J. C. (1984). Bayesian statistical prediction of concrete creep and shrinkage. ACI Journal, 81(4), 319–330. doi:10.14359/10686
  • Bažant, Z. P., & Hubler, M. H. (2014). Theory of cyclic creep of concrete based on Paris law for fatigue growth of subcritical microcracks. Journal of the Mechanics and Physics of Solids, 63, 187–200. doi:10.1016/j.jmps.2013.09.010
  • Bažant, Z. P., Hubler, M. H., & Yu, Q. (2011). Excessive creep deflections: An awakening. Concrete International, 8(33), 44–46.
  • Bažant, Z. P., Yu, Q., & Li, G. H. (2012). Excessive long-time deflections of prestressed box girders. I:Record-span bridge in Palau and other paradigms. Journal of Structural Engineering, 138(6), 676–686. doi:10.1061/(ASCE)ST.1943-541X.0000487
  • Beck, L. J., & Au, S. K. (2002). Bayesian updating of structural models and reliability using Markov Chain Monte Carlo simulation. Journal of Engineering Mechanics, 128(4), 380–391. doi:10.1061/(ASCE)0733-9399(2002)128:4(380)
  • Beck, J. L., & Katafygiotis, L. S. (1998). Updating models and their uncertainties I: Bayesian statistical framework. Journal of Engineering Mechanics, 124(4), 455–461. doi:10.1061/(ASCE)0733-9399(1998)124:4(455)
  • Biernatowski, K., & Puła, W. (1988). Probabilistic analysis of the stability of massive bridge abutments using simulation methods. Structural Safety, 5(1), 1–15. doi:10.1016/0167-4730(88)90002-1
  • Boulkaibet, I. (2014). Finite element model updating using Markov chain Monte Carlo techniques [Doctoral dissertation]. University of Johannesburg.
  • Bui-Thanh, T., Ghattas, O., Martin, J., & Stadler, G. (2013). A computational framework for infinite-dimensional Bayesian inverse problems Part I: The linearized case, with application to global seismic inversion. SIAM Journal on Scientific Computing, 35(6), A2494–A2523. doi:10.1137/12089586X
  • Cao, G., Zhang, W., Hu, J., & Peng, X. (2020). Long-term performance of prestressed concrete continuous box girders in the natural environment. Canadian Journal of Civil Engineering, 47(10), 1–9. doi:10.1139/cjce-2018-0447
  • Catbas, F. N., Susoy, M., & Frangopol, D. M. (2008). Structural health monitoring and reliability estimation: Long span truss bridge application with environmental monitoring data. Engineering Structures, 30(9), 2347–2359. doi:10.1016/j.engstruct.2008.01.013
  • Cheung, S. H., & Beck, J. L. (2009). Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters. Journal of Engineering Mechanics, 135(4), 243–255. doi:10.1061/(ASCE)0733-9399(2009)135:4(243)
  • Cinlar, E., Bažant, Z. P., & Osman, E. (1978). Stochastic process for extrapolating concrete creep. Journal of Engineering Mechanics, 103, 1069–1088. doi:10.1061/JMCEA3.0002298
  • Crisfield, M. A. (1991). The eccentricity issue in the design of plate and shell elements. Communications in Applied Numerical Methods, 7(1), 47–56. doi:10.1002/cnm.1630070108
  • Der Kiureghian, A., & Ke, J. B. (1988). The stochastic finite element method in structural reliability. Probabilistic Engineering Mechanics, 3(2), 83–91. doi:10.1016/0266-8920(88)90019-7
  • Deraemaeker, A., Reynders, E., De Roeck, G., & Kullaa, J. (2008). Vibration-based structural health monitoring using output-only measurements under changing environment. Mechanical Systems and Signal Processing, 22(1), 34–56. doi:10.1016/j.ymssp.2007.07.004
  • Ghasemzadeh, F., Manafpour, A., Sajedi, S., Shekarchi, M., & Hatami, M. (2016). Predicting long-term compressive creep of concrete using inverse analysis method. Construction and Building Materials, 124, 496–507. doi:10.1016/j.conbuildmat.2016.06.137
  • Gilbert, R. I., & Ranzi, G. (2011). Time-dependent behaviour of concrete structures. London: CRC Press.
  • Gupta, A. K., & Ma, P. S. (1977). Error in eccentric beam formulation. International Journal for Numerical Methods in Engineering, 11(9), 1473–1477. doi:10.1002/nme.1620110910
  • Han, B., Xiang, T. Y., & Xie, H. B. (2017). A Bayesian inference framework for predicting the long-term deflection of concrete structures caused by creep and shrinkage. Engineering Structures, 142(7), 46–55. doi:10.1016/j.engstruct.2017.03.055
  • Hedegaard, B. D., French, C. E. W., & Shield, C. K. (2017). Time-dependent monitoring and modeling of I-35W St. Anthony Falls Bridge. I: Analysis of monitoring data. Journal of Bridge Engineering, 22(7), 04017025. doi:10.1061/(ASCE)BE.1943-5592.0001053
  • Hsu, T. Y., & Loh, C. H. (2010). Damage detection accommodating nonlinear environmental effects by nonlinear principal component analysis. Structural Control and Health Monitoring, 17(3), 338–354. doi:10.1002/stc.320
  • Hu, W. H., Cardoso, A., & Magalhães, F. (2010). Environmental effects on modal variability of a stress-ribbon footbridge under operational conditions. Proceedings of ISMA (pp. 1387–1402).
  • Huang, H., Huang, S. S., & Pilakoutas, K. (2018). Modeling for assessment of long-term behavior of prestressed concrete box-girder bridges. Journal of Bridge Engineering, 23(3), 04018002. doi:10.1061/(ASCE)BE.1943-5592.0001210
  • Jia, S., Akiyama, M., Han, B., Xie, H., & Frangopol, D. M. (2023). Structural identification via the inference of the stochastic volatility model conditioned on the time-dependent bridge deflection. Structural Safety, 100, 102279. doi:10.1016/j.strusafe.2022.102279
  • Jung, S., & Ghaboussi, J. (2010). Inverse identification of creep of concrete from in situ load–displacement monitoring. Engineering Structures, 32(5), 1437–1445. doi:10.1016/j.engstruct.2010.01.022
  • Kabir, A. F. (1976). Nonlinear analysis of reinforced concrete panels, slabs and shells for time-dependent effects (Report NO. UCB-SEMS 76/6). University of California, Berkeley.
  • Krishna, K., & Murty, M. N. (1999). Genetic K-means algorithm. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 29(3), 433–439. doi:10.1109/3477.764879
  • Kristek, V., Bažant, Z. P., Zich, M., & Kohoutkova, A. (2006). Box girder bridge deflections - Why is the initial trend deceptive? Concrete International, 28(1), 55–63.
  • Kullaa, J. (2002). Elimination of environmental influences from damage-sensitive features in a structural health monitoring system. Proceedings of the first European workshop on structural health monitoring (pp. 742–749).
  • Lanata, F., & Del Grosso, A. (2006). Damage detection and localization for continuous static monitoring of structures using a proper orthogonal decomposition of signals. Smart Materials and Structures, 15(6), 1811–1829. doi:10.1088/0964-1726/15/6/036
  • Laory, I., Trinh, T. N., & Smith, I. F. C. (2011). Evaluating two model-free data interpretation methods for measurements that are influenced by temperature. Advanced Engineering Informatics, 25(3), 495–506. doi:10.1016/j.aei.2011.01.001
  • Lee, J., Lee, K. C., Sim, S. H., Lee, J., & Lee, Y. J. (2019). Bayesian prediction of pre-stressed concrete bridge deflection using finite element analysis. Sensors, 19(22), 4956. doi:10.3390/s19224956
  • Li, C. C., & Der Kiureghian, A. (1993). Optimal discretization of random fields. Journal of Engineering Mechanics, 119(6), 1136–1154. doi:10.1061/(ASCE)0733-9399(1993)119:6(1136)
  • Manson, G. (2002). Identifying damage sensitive and environment insensitive features for damage detection. Proceedings of the Third International Conference on Identification in Engineering Systems (pp. 187–197).
  • Marwala, T., Boulkaibet, I., & Adhikari, S. (2016). Probabilistic finite element model updating using bayesian statistics: Application to Aeronautical and Mechanical Engineering. New York: John Wiley & Sons.
  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculation by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092. doi:10.1063/1.1699114
  • Miguel, V., Dorys, G., Jesus, M., & Thomas, S. (2018). A novel laser and video-based displacement transducer to monitor bridge deflections. Sensors, 18(4), 970. doi:10.3390/s18040970
  • Ministry of Transport of People’s Republic of China. (1999). GB/T 50283-1999-Unified standard for reliability design of highway engineering structures.
  • Ministry of Transport of People’s Republic of China. (2011). JTG/T H21-2011-Standard for technical condition evaluation for highway bridges.
  • Ojdrovic, R. P., & Zarghamee, M. S. (1996). Concrete creep and shrinkage prediction from short-term tests. ACI Materials Journal, 93(2), 169–177.
  • Pandey, A., Singh, A., & Gardoni, P. (2022). A review of Information Field Theory for Bayesian inference of random fields. Structural Safety, 99, 102225. doi:10.1016/j.strusafe.2022.102225
  • Papakonstantinou, K. G., & Shinozuka, M. (2013). Spatial stochastic direct and inverse analysis for the extent of damage in deteriorated RC structures. Computers & Structures, 128(11), 286–296. doi:10.1016/j.compstruc.2013.08.004
  • Peeters, B., & De Roeck, G. (2001). One-year monitoring of the Z24 bridge: Environmental effects versus damage effects. Earthquake Engineering & Structural Dynamics, 30(2), 149–171. doi:10.1002/1096-9845(200102)30:2 < 149::AID-EQE1 > 3.0.CO;2-Z
  • Reynders, E., Wursten, G., & De Roeck, G. (2014). Output-only structural health monitoring in changing environmental conditions by means of nonlinear system identification. Structural Health Monitoring, 13(1), 82–93. doi:10.1177/1475921713502836
  • Shekarchi, M., Ghasemzadeh, F., & Sajedi, S. (2012). Inverse analysis method for concrete shrinkage prediction from short-term tests. ACI Materials Journal, 109(3), 293–302. doi:10.14359/51683819
  • Sohn, H., Worden, K., & Farrar, C. R. (2002). Consideration of environmental and operational variability for damage diagnosis. Proc. SPIE, 4696, 100–111. doi:10.1117/12.472546
  • Sousa, H., Bento, J., & Figueiras, J. (2013). Construction assessment and long-term prediction of prestressed concrete bridges based on monitoring data. Engineering Structures, 52, 26–37. doi:10.1016/j.engstruct.2013.02.003
  • Sousa, H., Bento, J., & Figueiras, J. (2014). Assessment and management of concrete bridges supported by monitoring data-based finite-element modeling. Journal of Bridge Engineering, 19(6), 05014002. doi:10.1061/(ASCE)BE.1943-5592.0000604
  • Sousa, H., Santos, L. O., & Chryssanthopoulos, M. (2019). Quantifying monitoring requirements for predicting creep deformations through Bayesian updating methods. Structural Safety, 76, 40–50. doi:10.1016/j.strusafe.2018.06.002
  • Straub, D. (2014). Value of information analysis with structural reliability methods. Structural Safety, 49, 75–85. doi:10.1016/j.strusafe.2013.08.006
  • Tong, T., Liu, Z., Zhang, J., & Yu, Q. (2016). Long-term performance of prestressed concrete bridges under the intertwined effects of concrete damage, static creep and traffic-induced cyclic creep. Engineering Structures, 127(11), 510–524. doi:10.1016/j.strusafe.2013.08.006
  • Varmarcke, E. (1983). Random fields: Analysis and synthesis. Cambridge, MA: The MIT Press.
  • Wu, W. Q., Chen, X. G., Li, B., & Xie, Q. H. (2009). Investigation of construction quality evaluating indices in PC continuous box-girder. Journal of Architecture and Civil Engineering, 26(3), 42–48. (In Chinese). doi:10.3321/j.issn:1673-2049.2009.03.007
  • Yan, A.-M., Kerschen, G., De Boe, P., & Golinval, J.-C. (2005). Structural damage diagnosis under varying environmental conditions—Part I: A linear analysis. Mechanical Systems and Signal Processing, 19(4), 847–864. doi:10.1016/j.ymssp.2004.12.002
  • Yang, I. H. (2007). Uncertainty and sensitivity analysis of time-dependent effects in concrete structures. Engineering Structures, 29(7), 1366–1374. doi:10.1016/j.engstruct.2006.07.015
  • Zhang, J., & Ellingwood, B. (1994). Orthogonal series expansions of random fields in reliability analysis. Journal of Engineering Mechanics, 120(12), 2660–2677. doi:10.1061/(ASCE)0733-9399(1994)120:12(2660)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.