Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Latest Articles
225
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Probability-based surface deterioration assessment of bridge pylon and state updating using inspected crack length distribution

, , ORCID Icon &
Received 10 Aug 2022, Accepted 17 Jan 2023, Published online: 18 Apr 2023

References

  • Al-Ameeri, A. S., Rafiq, M. I., & Tsioulou, O. (2021). Combined impact of carbonation and crack width on the chloride penetration and corrosion resistance of concrete structures. Cement and Concrete Composites, 115, 103819. doi:10.1016/j.cemconcomp.2020.103819
  • Akiyama, M., Frangopol, D. M., & Ishibashi, H. (2020). Toward life-cycle reliability-, risk-, and resilience-based design and assessment of bridges and bridge networks under independent and interacting hazards: Emphasis on earthquake, tsunami and corrosion. Structure and Infrastructure Engineering, 16(1), 26–50. doi:10.1080/15732479.2019.1604770
  • Akiyama, M., Frangopol, D. M., & Yoshida, I. (2010). Time-dependent reliability analysis of existing RC structures in a marine environment using hazard associated with airborne chlorides. Engineering Structures, 32(11), 3768–3779. doi:10.1016/j.engstruct.2010.08.021
  • Azenha, M., Lameiras, R., De Sousa, C., & Barros, J. (2014). Application of air cooled pipes for reduction of early age cracking risk in a massive RC wall. Engineering Structures, 62-63, 148–163. doi:10.1016/j.engstruct.2014.01.018
  • Branco, F. A., & Mendes, P. A. (1993). Thermal actions for concrete bridge design. Journal of Structural Engineering, 119(8), 2313–2331. doi:10.1061/(ASCE)0733-9445(1993)119:8(2313)
  • Bažant, Z. P., & Xu, K. (1991). Size effect in fatigue fracture of concrete. ACI Materials Journal, 88, 390–399.
  • Chen, Z., Guo, T., Liu, S., & Lin, W. (2019). Random field-based time-dependent reliability analyses of a PSC box-girder bridge. Applied Sciences, 9(20), 4415. doi:10.3390/app9204415
  • Der Kiureghian, A., & Ke, J. (1988). The stochastic finite element method in structural reliability. Probabilistic Engineering Mechanics, 3(2), 83–91. doi:10.1016/0266-8920(88)90019-7
  • Der Kiureghian, A., & Liu, P. (1986). Structural reliability under incomplete probability information. Journal of Engineering Mechanics, 112(1), 85–104. doi:10.1061/(ASCE)0733-9399(1986)112:1(85)
  • Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal processes (4th ed.). Hoboken, New Jersey: Wiley.
  • Elbadry, M. M., & Ghali, A. (1983a). Temperature variations in concrete bridges. Journal of Structural Engineering, 109(10), 2355–2374. doi:10.1061/(ASCE)0733-9445(1983)109:10(2355)
  • Elbadry, M. M., & Ghali, A. (1983b). Nonlinear temperature distribution and its effects on bridges. IABSE Proceedings, 66, 169–191.
  • Fenton, B. G. A. (1994). Error evaluation of three random-field generators. Journal of Engineering Mechanics, 120(12), 2478–2497. doi:10.1061/(ASCE)0733-9399(1994)120:12(2478)
  • Gaspar, A., Lopez-Caballero, F., Modaressi-Farahmand-Razavi, A., & Gomes-Correia, A. (2014). Methodology for a probabilistic analysis of an RCC gravity dam construction. Modelling of temperature, hydration degree and ageing degree fields. Engineering Structures, 65, 99–110. doi:10.1016/j.engstruct.2014.02.002
  • Ge, B., & Kim, S. (2021). Determination of appropriate updating parameters for effective life-cycle management of deteriorating structures under uncertainty. Structure and Infrastructure Engineering, 17(9), 1284–1298. doi:10.1080/15732479.2020.1809466
  • Gaedicke, C., Roesler, J., & Shah, S. (2009). Fatigue crack growth prediction in concrete slabs. International Journal of Fatigue, 31(8-9), 1309–1317. doi:10.1016/j.ijfatigue.2009.02.040
  • Gürdür Broo, D., Bravo-Haro, M., & Schooling, J. (2022). Design and implementation of a smart infrastructure digital twin. Automation in Construction, 136, 104171. doi:10.1016/j.autcon.2022.104171
  • Gao, Y., & Mosalam, K. M. (2018). Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering, 33(9), 748–768. doi:10.1111/mice.12363
  • Han, X., Yang, D. Y., & Frangopol, D. M. (2019). Probabilistic life-cycle management framework for ship structures subjected to coupled corrosion–fatigue deterioration processes. Journal of Structural Engineering, 145(10), 04019116. doi:10.1061/(ASCE)ST.1943-541X.0002406
  • He, Z. S., Supasit, S., Akiyama, M., & Frangopol, D. M. (2020). Life-cycle reliability-based design and reliability updating of reinforced concrete shield tunnels in coastal regions. Structure and Infrastructure Engineering, 16(4), 726–737. doi:10.1080/15732479.2019.1674343
  • Huang, X., Zhu, J., & Li, Y. (2021). Temperature analysis of steel box girder considering actual wind field. Engineering Structures, 246, 113020. doi:10.1016/j.engstruct.2021.113020
  • Ishibashi, H., Akiyama, M., Frangopol, D. M., Koshimura, S., Kojima, T., & Nanami, K. (2021). Framework for estimating the risk and resilience of road networks with bridges and embankments under both seismic and tsunami hazards. Structure and Infrastructure Engineering, 17(4), 494–514. doi:10.1080/15732479.2020.1843503
  • Johnstone, I. M. (2006). High dimensional statistical inference and random matrices. International Congress of Mathematicians. Madrid 2006, Volume I. Plenary Lectures and Ceremonies (pp. 307–333 Madrid: EMS Press.
  • Jia, M., Wu, Z., Yu, R. C., & Zhang, X. (2021). Residual fracture energy of concrete suffering from fatigue loading. Engineering Fracture Mechanics, 255, 107956. doi:10.1016/j.engfracmech.2021.107956
  • Jang, S. Y., Kim, B. S., & Oh, B. H. (2011). Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests. Cement and Concrete Research, 41(1), 9–19. doi:10.1016/j.cemconres.2010.08.018
  • Jacobsen, S., Marchand, J., & Boisvert, L. (1996). Effect of cracking and healing on chloride transport in OPC concrete. Cement and Concrete Research, 26(6), 869–881. doi:10.1016/0008-8846(96)00072-5
  • Karaaslan, E., Zakaria, M., & Catbas, F. N. (2022). Mixed reality-assisted smart bridge inspection for future smart cities. In The Rise of Smart Cities (pp. 261–280 Oxford: Elsevier.
  • Kim, K., & Lee, J. (2020). Fragility of bridge columns under vehicle impact using risk analysis. Advances in Civil Engineering, 2020, 1–14. doi:10.1155/2020/7193910
  • Kim, S., & Frangopol, D. M. (2018). Multi-objective probabilistic optimum monitoring planning considering fatigue damage detection, maintenance, reliability, service life and cost. Structural and Multidisciplinary Optimization, 57(1), 39–54. doi:10.1007/s00158-017-1849-3
  • Kim, S., Ge, B., & Frangopol, D. M. (2019). Effective optimum maintenance planning with updating based on inspection information for fatigue-sensitive structures. Probabilistic Engineering Mechanics, 58, 103003. doi:10.1016/j.probengmech.2019.103003
  • Kolluru, S. V., O’Neil, E. F., Popovics, J. S., & Shah, S. P. (2001). Crack propagation in flexural fatigue of concrete. Engineering, 126, 646–652.
  • Liu, H., Yang, S., He, Y., Zhang, M., Zhao, G., Cao, Z., & Ruan, X. (2022). Predictive control using a hybrid data-based artificial neural network model: a case study on the construction of massive concrete structures. Structure and Infrastructure Engineering, Advance online publication. doi:10.1080/15732479.2022.2030368
  • Li, Q., & Ye, X. (2018). Surface deterioration analysis for probabilistic durability design of RC structures in marine environment. Structural Safety, 75, 13–23. doi:10.1016/j.strusafe.2018.05.007
  • Li, T., Bolic, M., & Djuric, P. M. (2015). Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Processing Magazine, 32(3), 70–86. doi:10.1109/MSP.2014.2330626
  • Ministry of Transport of the People’s Republic of China (MOT) (2007). JTJ 302-2006 Technical specification for detection and assessment of harbour and structural marine structures. Beijing: MOT. (in Chinese).
  • Meteomanz.com. (http://meteomanz.com.).
  • National Center for Quality Inspection and Testing of Roads and Bridges (NCQITRB) (2020). Existing bridge inspection and evaluation, (Report No. 2020-229-2) China: Beijing. (in Chinese)
  • Niu, D., Yang, D., & Luo, D. (2021). Durability assessment method of existing concrete structures. Building Structure, 51(117), 115–121. (in Chinese)
  • Oh, B. H. (1986). Fatigue analysis of plain concrete in flexure. Journal of Structural Engineering, 112(2), 273–288. doi:10.1061/(ASCE)0733-9445(1986)112:2(273)
  • Pregnolato, M., Gunner, S., Voyagaki, E., De Risi, R., Carhart, N., Gavriel, G., … Taylor, C. (2022). Towards Civil Engineering 4.0 : Concept, workflow and application of Digital Twins for existing infrastructure. Automation in Construction, 141, 104421. doi:10.1016/j.autcon.2022.104421
  • Ray, S., & Chandra Kishen, J. M. (2010). Fatigue crack propagation model for plain concrete - An analogy with population growth. Engineering Fracture Mechanics, 77(17), 3418–3433. doi:10.1016/j.engfracmech.2010.09.008
  • Ray, S., Jeshna, C. C., & Gupta, N. (2020). Fatigue life assessment of concrete members under variable amplitude loading: An analytical approach. Engineering Fracture Mechanics, 223, 106735. doi:10.1016/j.engfracmech.2019.106735
  • Sousa Tomé, E., Pimentel, M., & Figueiras, J. (2018). Structural response of a concrete cable-stayed bridge under thermal loads. Engineering Structures, 176, 652–672. doi:10.1016/j.engstruct.2018.09.029
  • Schluter, L. L., & Sutherland, H. J. (1991). User’s Guide For LIFE2’s Rainflow Counting Algorithm, (Report No. SAND90–2259·UC–261). United States: Sandia National Laboratories.
  • Shen, J. (2013). Study of crack growth probability of mass bridge tower under the thermal fatigue load (Doctoral dissertation). Wuhan University of Technology, Wuhan. (in Chinese)
  • Shu, J., Zhao, D., Zheng, X., Li, Y., & Zhang, Y. (2021). Bridge temperature prediction model based on long-short term memory neural network. Journal of Physics: Conference Series, 1966, 012013.
  • Srivaranun, S., Akiyama, M., Masuda, K., Frangopol, D. M., & Maruyama, O. (2022). Random field-based reliability updating framework for existing RC structures incorporating the effect of spatial steel corrosion distribution. Structure and Infrastructure Engineering, 18(7), 967–982. doi:10.1080/15732479.2021.1995445
  • Sony, S., Dunphy, K., Sadhu, A., & Capretz, M. (2021). A systematic review of convolutional neural network-based structural condition assessment techniques. Engineering Structures, 226, 111347. doi:10.1016/j.engstruct.2020.111347
  • Sain, T., & Chandra Kishen, J. M. (2008). Probabilistic assessment of fatigue crack growth in concrete. International Journal of Fatigue, 30(12), 2156–2164. doi:10.1016/j.ijfatigue.2008.05.024
  • Slowik, V., Plizzari, G. A., & Saouma, V. E. (1996). Fracture of concrete under variable amplitude fatigue loading. ACI Materials Journal, 93(3), 272–283.
  • Vanmarcke, E. (2010). Random fields: analysis and synthesis. Singapore: World Scientific.
  • Van den Heede, P., Maes, M., & De Belie, N. (2014). Influence of active crack width control on the chloride penetration resistance and global warming potential of slabs made with fly ash + silica fume concrete. Construction and Building Materials, 67, 74–80. doi:10.1016/j.conbuildmat.2013.10.032
  • Wang, H. L., Dai, J. G., Sun, X. Y., & Zhang, X. L. (2016). Characteristics of concrete cracks and their influence on chloride penetration. Construction and Building Materials, 107, 216–225. doi:10.1016/j.conbuildmat.2016.01.002
  • Yilmaz, T., Banerjee, S., & Johnson, P. A. (2018). Uncertainty in risk of highway bridges assessed for integrated seismic and flood hazards. Structure and Infrastructure Engineering, 14(9), 1182–1196. doi:10.1080/15732479.2017.1402065
  • Zhang, M.,Akiyama, M.,Shintani, M.,Xin, J., &Frangopol, D. M. (2021). Probabilistic estimation of flexural loading capacity of existing RC structures based on observational corrosion-induced crack width distribution using machine learning. Structural Safety, 91, 102098 10.1016/j.strusafe.2021.102098.
  • Zhu, B. (2014). Thermal stresses and temperature control of mass concrete. Oxford: Elsevier.
  • Zhu, H., Hu, Y., Ma, R., Wang, J., & Li, Q. (2021). Concrete thermal failure criteria, test method, and mechanism: A review. Construction and Building Materials, 283, 122762. doi:10.1016/j.conbuildmat.2021.122762

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.