Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Latest Articles
119
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of eccentric loading on fatigue cracking mode and characteristics of diaphragm-to-rib welded joints in steel bridge deck

, , &
Received 10 Jul 2022, Accepted 20 Feb 2023, Published online: 02 Jun 2023

References

  • Cheng, X., Wang, D. L., Wang, B. J., Chen, A. R., & Ma, R. J. (2022). Numerical simulation of root-deck crack propagation of orthotropic steel bridge deck. Structure and Infrastructure Engineering, 18(7), 1076–1090. doi:10.1080/15732479.2022.2039219
  • Dekker, R., Meer, F., Maljaars, J., & Sluys, L. (2021). A cohesive XFEM model for simulating fatigue crack growth under various load conditions. Engineering Fracture Mechanics, 248(1), 107688. doi:10.1016/j.engfracmech.2021.107688
  • Dhondt, G. (2014). Application of the finite element method to mixed-mode cyclic crack propagation calculations in specimens. International Journal of Fatigue, 58, 2–11. doi:10.1016/j.ijfatigue.2013.05.001
  • Di, J., Ruan, X. Z., Zhou, X. H., Wang, J., & Peng, X. (2021). Fatigue assessment of orthotropic steel bridge decks based on strain monitoring data. Engineering Structures, 228(1), 111437. doi:10.1016/j.engstruct.2020.111437
  • Fang, L.,Fu, Z. Q.,Ji, B. H.,Wang, Y., &X. (2023). Fatigue cracking characteristics of components stiffened with vertical ribs under eccentric loading in steel bridge deck. Structures, 52, 495–505. doi:10.1016/j.istruc.2023.04.012.
  • Fang, L., Fu, Z. Q., Ji, B. H., & Gao, Y. Q. (2022). Fatigue crack-propagation law of diaphragm-to-rib welded joint in steel bridge deck. Journal of Constructional Steel Research, 194, 107311. doi:10.1016/j.jcsr.2022.107311
  • Fang, L., Fu, Z. Q., Ji, B. H., & Kainuma, S. (2022). Research on mixed mode crack drilling under out-of-plane shear in steel bridge deck. International Journal of Fatigue, 156, 106679. doi:10.1016/j.ijfatigue.2021.106679
  • Fisher, J. W., & Roy, S. (2011). Fatigue of steel bridge infrastructure. Structure and Infrastructure Engineering, 7(7-8), 457–475. doi:10.1080/15732479.2010.493304
  • Fremy, F., Pommier, S., Galenne, E., Courtin, S., & Roux, L. (2014). Load path effect on fatigue crack propagation in I + II + III mixed mode conditions – Part 2: Finite element analysis. International Journal of Fatigue, 62, 113–118. doi:10.1016/j.ijfatigue.2013.06.007
  • Guo, T., Liu, Z. X., Pan, S. J., & Pan, Z. H. (2015). Cracking of longitudinal diaphragms in long-span cable-stayed bridges. Journal of Bridge Engineering, 20(11), 04015011. doi:10.1061/(ASCE)BE.1943-5592.0000771
  • Hobbacher, A. F. (2006). Recommendations for fatigue design of welded joints and components. IIW doc. XIII-1965-03/XV-1127-03. Switzerland: Springer. doi:10.1007/978-3-319-23757-2
  • Hobbacher, A. F. (2009). The new IIW recommendations for fatigue assessment of welded joints and components – A comprehensive code recently updated. International Journal of Fatigue, 31(1), 50–58. doi:10.1016/j.ijfatigue.2008.04.002
  • Kitagawa, H., Yuuki, R., & Tohgo, K. (1981). Fatigue crack propagation behavior under mixed mode conditions (KI and KII). Transactions of the Japan Society of Mechanical Engineers Series A, 47(424), 1283–1292. doi:10.1299/kikaia.47.1283
  • Kolstein, M. H. (2007). Fatigue classification of welded joints in orthotropic steel bridge decks. Publication of Transport & Road Research Laboratory. http://resolver.tudelft.nl/uuid:a7bb8daa-930b-405d-af60-8fbfb7c4119b.
  • Kujawski, D. (2001). A fatigue crack driving force parameter with load ratio effects. International Journal of Fatigue, 23, 239–246. doi:10.1016/S0142-1123(01)00158-X
  • Li, D. T., Zhang, C. G., & Lu, P. M. (2020). Fatigue property and improvement of a rounded welding region between the diaphragm plate and closed rib of an orthotropic steel bridge deck. Metals, 10(2), 161. doi:10.3390/met10020161
  • Li, H., Zhao, B., & Zhu, H. (2018). Numerical simulation of fatigue performance of diaphragm of large-span bridge orthotropic deck. Complexity, 2018(4), 1–19. doi:10.1155/2018/3903461
  • Liao, X. X., Huang, Y. M., Qiang, B., Yao, C. R., Wei, X., & Li, Y. D. (2020). Corrosion fatigue tests in synthetic seawater with constant temperature liquid circulating system. International Journal of Fatigue, 135, 105542. doi:10.1016/j.ijfatigue.2020.105542
  • Lin, S. S. (2020). Fatigue damage analysis of typical details of orthotropic steel bridge deck. Bridge Construction, 50(4), 54–60. (In Chinese). doi:10.3969/j.issn.1003-4722.2020.04.009
  • Lippold, J. C. (2014). Fracture and fatigue. New Jersey: John Wiley & Sons. doi:10.1002/9781118960332.ch7
  • Mao, J. X., Wang, H., & Li, J. (2019). Fatigue reliability assessment of a long-span cable-stayed bridge based on one-year monitoring strain data. Journal of Bridge Engineering, 24(1), 05018015. doi:10.1061/(ASCE)BE.1943-5592.0001337
  • Matsuishi, M., & Endo, T. (1968). Fatigue of metals subjected to varying stress. Japan Society of Mechanical Engineers, 68(2), 37–40. doi:10.1103/PhysRevSeriesI.30.62
  • Mohammadi, S. (2008). Extended finite element method. New Jersey: John Wiley & Sons. doi:10.1002/9781118443378.ch3
  • Pook, L. P. (1980). Fracture and fatigue: Elasto-plasticity, thin sheet and micromechanism problems. Oxford: Pergamon Press. doi:10.1016/C2013-0-03410-X
  • Pook, L. P. (2000). Linear elastic fracture Mechanics for engineers: Theory and application. Boston: WIT press. https://www.witpress.com/books/978-1-85312-703-8.
  • Richard, H. A., Schirmeisen, N. H., & Eberlein, A. (2013). Experimental investigations on mixed-mode-loaded cracks. Medizinische Technik, 13(3), 630–634. doi:10.1002/mop.28915
  • Richard, H. A., Schramm, B., & Schirmeisen, N.-H. (2014). Cracks on mixed mode loading-theories, experiments, simulations. International Journal of Fatigue, 62, 93–103. doi:10.1016/j.ijfatigue.2013.06.019
  • Schijve, J. (2001). Fatigue of structures and materials. Switzerland: Springer. doi:10.1007/978-1-4020-6808-9
  • Sciammarella, C. A., & Sciammarella, F. M. (2012). Strain gage rosettes: Selection, application and data reduction. New Jersey: John Wiley & Sons. doi:10.1002/9781119994091.ch5
  • Tsakopoulos, P. A., & Fisher, J. W. (2003). Full-scale fatigue tests of steel orthotropic decks for the Williamsburg Bridge. Journal of Bridge Engineering, 8(5), 323–333. doi:10.1061/(ASCE)1084-0702(2003)8:5(323)
  • Wang, Y. X., Fu, Z. Q., Ge, H. B., Ji, B. H., & Hayakawa, N. (2019). Cracking reasons and features of fatigue details in the diaphragm of curved steel box girder. Engineering Structures, 201(9), 109767. doi:10.1016/j.engstruct.2019.109767
  • Yang, M. Y., Ji, B. H., Yuanzhou, Z. Y., & Fu, Z. Q. (2016). Fatigue behavior and strength evaluation of vertical stiffener welded joint in orthotropic steel decks. Engineering Failure Analysis, 70(4), 222–236. doi:10.1016/j.engfailanal.2016.05.001
  • Yao, Y., Ji, B. H., Li, Y., F., Fu, Z. Q., & Chen, Z. Z. (2021). Diaphragm splicing deviation in steel bridge deck: Effect on fatigue performance and its preventive measures. Journal of Performance of Constructed Facilities, 35(3), 04021008. doi:10.1061/(ASCE)CF.1943-5509.0001572
  • Yao, Y., Ji, B. H., Ye, Z., Fu, Z. Q., & Zhu, Q. (2020). Prediction for key damaged parts in steel bridge decks based on the stress influence area. Structures, 26, 745–754. doi:10.1016/j.istruc.2020.04.011
  • Yao, Y., Ji, B., Fu, Z., Zhou, J., & Wang, Y. (2019). Optimization of stop-hole parameters for cracks at diaphragm-to-rib weld in steel bridges. Journal of Constructional Steel Research, 162(5), 105747. doi:10.1016/j.jcsr.2019.105747
  • Zhu, Z. W., Xiang, Z., Li, J. P., & Carpinteri, A. (2020). Fatigue damage investigation on diaphragm cutout detail on orthotropic bridge deck based on field measurement and FEM. Thin-Walled Structures, 157(1), 107106. doi:10.1016/j.tws.2020.107106
  • Zong, L., Shi, G., Wang, Y. Q., & Sun, T. (2015). Experimental investigation on fatigue crack behavior of bridge steel Q345qD base metal and butt weld. Materials & Design (1980-2015), 66, 196–208. doi:10.1016/j.matdes.2014.10.059

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.