Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Latest Articles
230
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Seismic-induced poundings in highway and high-speed railway bridges: a state-of-the-art review

ORCID Icon, , , &
Received 01 Oct 2022, Accepted 05 May 2023, Published online: 03 Jul 2023

References

  • Abbasi, M., & Moustafa, M. A. (2017). Effect of shear keys on seismic response of irregular bridge configurations. Transportation Research Record: Journal of the Transportation Research Board, 2642(1), 155–165. doi:10.3141/2642-17
  • Abbasi, M., & Moustafa, M. A. (2019). Probabilistic seismic assessment of as-built and retrofitted old and newly designed skewed multi-frame bridges. Soil Dynamics and Earthquake Engineering, 119, 170–186. doi:10.1016/j.soildyn.2019.01.013
  • Abdel Raheem, S. E. (2009). Pounding mitigation and unseating prevention at expansion joints of isolated multi-span bridges. Engineering Structures, 31(10), 2345–2356. doi:10.1016/j.engstruct.2009.05.010
  • Abdel-Ghaffar, S. M., Maragakis, E. M., & Saiidi, M. S. (1997). Effects of the hinge restrainers on the response of the Aptos Creek Bridge during the 1989 Loma Prieta Earthquake. Earthquake Spectra, 13(2), 167–189. doi:10.1193/1.158594
  • American Association of State Highway and Transportation Officials (AASHTO) ( 2010). Load and resistance factor design specifications for highway bridges. AASHTO.
  • Amjadian, M., & Agrawal, A. K. (2016). Rigid-body motion of horizontally curved bridges subjected to earthquake-induced pounding. Journal of Bridge Engineering, 21(12), 04016090. doi:10.1061/(ASCE)BE.1943-5592.0000962
  • Anagnostopoulos, S. A. (2004). Equivalent viscous damping for modeling inelastic impacts in earthquake pounding problems. Earthquake Engineering & Structural Dynamics, 33(8), 897–902. doi:10.1002/eqe.377
  • Anand, V., & Kumar, S. R. S. (2018). Seismic soil-structure interaction: A state-of-the-art review. Structures, 16, 317–326. doi:10.1016/j.istruc.2018.10.009
  • Andrawes, B., & DesRoches, R. (2005). Unseating prevention for multiple frame bridges using superelastic devices. Smart Materials and Structures, 14(3), S60–S67. doi:10.1088/0964-1726/14/3/008
  • Andrawes, B., & DesRoches, R. (2007). Comparison between shape memory alloy seismic restrainers and other bridge retrofit devices. Journal of Bridge Engineering, 12(6), 700–709. doi:10.1061/(ASCE)1084-0702(2007)12:6(700)
  • Banerjee, A., Chanda, A., & Das, R. (2017). Seismic analysis of a curved bridge considering deck‐abutment pounding interaction: An analytical investigation on the post‐impact response. Earthquake Engineering & Structural Dynamics, 46(2), 267–290. doi:10.1002/eqe.2791
  • Berton, S., Strandgaard, H., & Bolander, J. E. (2004). Effect of non-linear fluid viscous dampers on the size of expansion joints of multi-span prestressed concrete segmental box-girder bridges. In Proceedings of the 13th world conference on earthquake engineering, Vancouver, BC, Canada.
  • Bi, K., & Hao, H. (2013). Numerical simulation of pounding damage to bridge structures under spatially varying ground motions. Engineering Structures, 46, 62–76. doi:10.1016/j.engstruct.2012.07.012
  • Bi, K., & Hao, H. (2015). Modelling of shear keys in bridge structures under seismic loads. Soil Dynamics and Earthquake Engineering, 74, 56–68. doi:10.1016/j.soildyn.2015.03.013
  • Bi, K., Hao, H., & Chouw, N. (2009). Required separation distance between decks and at abutments of a bridge crossing a canyon site to avoid seismic pounding. Earthquake Engineering & Structural Dynamics, 39(3), n/a–n/a. doi:10.1002/eqe.943
  • Bi, K., Hao, H., & Chouw, N. (2011). Influence of ground motion spatial variation, site condition and SSI on the required separation distances of bridge structures to avoid seismic pounding. Earthquake Engineering & Structural Dynamics, 40(9), 1027–1043. doi:10.1002/eqe.1076
  • Bi, K., Hao, H., & Chouw, N. (2013). 3D FEM analysis of pounding response of bridge structures at a canyon site to spatially varying ground motions. Advances in Structural Engineering, 16(4), 619–640. doi:10.1260/1369-4332.16.4.619
  • Bozorgzadeh, A., Megally, S. H., Restrepo, J. I., & Ashford, S. A. (2006). Capacity evaluation of exterior sacrificial shear keys of bridge abutments. Journal of Bridge Engineering, 11(5), 555–565. doi:10.1061/(ASCE)1084-0702(2006)11:5(555)
  • Bruneau, M., Wilson, J. C., & Tremblay, R. (1996). Performance of steel bridges during the 1995 Hyogo-ken Nanbu (Kobe, Japan) earthquake. Canadian Journal of Civil Engineering, 23(3), 678–713. doi:10.1139/l96-883
  • Caltrans, S. (2010). Caltrans seismic design criteria version 1.6. California Department of Transportation, Sacramento.
  • Chaudhary, A. B., & Bathe, K. J. (1986). A solution method for static and dynamic analysis of three-dimensional contact problems with friction. Computers & Structures, 24(6), 855–873. doi:10.1016/0045-7949(86)90294-4
  • Chen, J., Han, Q., Liang, X., & Du, X. (2017). Effect of pounding on nonlinear seismic response of skewed highway bridges. Soil Dynamics and Earthquake Engineering, 103, 151–165. doi:10.1016/j.soildyn.2017.09.008
  • Choi, E., Lee, D. H., & Choei, N. Y. (2009). Shape memory alloy bending bars as seismic restrainers for bridges in seismic areas. International Journal of Steel Structures, 9(4), 261–273. doi:10.1007/BF03249500
  • Choi, E., Park, J., Yoon, S. J., Choi, D. H., & Park, C. (2010). Comparison of seismic performance of three restrainers for multiple-span bridges using fragility analysis. Nonlinear Dynamics, 61(1-2), 83–99. doi:10.1007/s11071-009-9633-6
  • Chouw, N., & Hao, H. (2008a). Significance of SSI and nonuniform near-fault ground motions in bridge response I: Effect on response with conventional expansion joint. Engineering Structures, 30(1), 141–153. doi:10.1016/j.engstruct.2007.03.002
  • Chouw, N., & Hao, H. (2008b). Significance of SSI and non-uniform near-fault ground motions in bridge response II: Effect on response with modular expansion joint. Engineering Structures, 30(1), 154–162. doi:10.1016/j.engstruct.2007.02.020
  • Chouw, N., & Hao, H. (2009). Seismic design of bridge structures with allowance for large relative girder movements to avoid pounding. Bulletin of the New Zealand Society for Earthquake Engineering, 42(2), 75–85. doi:10.5459/bnzsee.42.2.75-85
  • Chouw, N., & Hao, H. (2012). Pounding damage to buildings and bridges in the 22 February 2011 Christchurch earthquake. International Journal of Protective Structures, 3(2), 123–139. doi:10.1260/2041-4196.3.2.123
  • Chouw, N., Hao, H., & Su, H. (2006). Multi-sided pounding response of bridge structures with non-linear bearings to spatially varying ground excitation. Advances in Structural Engineering, 9(1), 55–66. doi:10.1260/13694330677623293
  • Demartino, C., Wu, J. G., & Xiao, Y. (2017). Response of shear-deficient reinforced circular RC columns under lateral impact loading. International Journal of Impact Engineering, 109, 196–213. doi:10.1016/j.ijimpeng.2017.06.011
  • DesRoches, R., & Delemont, M. (2002). Seismic retrofit of simply supported bridges using shape memory alloys. Engineering Structures, 24(3), 325–332. doi:10.1016/S0141-0296(01)00098-0
  • DesRoches, R., & Fenves, G. L. (2000). Design of seismic cable hinge restrainers for bridges. Journal of Structural Engineering, 126(4), 500–509. doi:10.1061/(ASCE)0733-9445(2000)126:4(500)
  • Dimitrakopoulos, E. G. (2011). Seismic response analysis of skew bridges with pounding deck–abutment joints. Engineering Structures, 33(3), 813–826. doi:10.1016/j.engstruct.2010.12.004
  • Elnashai, A. S., Gencturk, B., Kwon, O. S., Al-Qadi, I. L., Hashash, Y., & Roesler, J. R., Kim, S.J., Jeong, S. H., Dukes, J., & Valdivia, A. (2010). The Maule (Chile) earthquake of February 27, 2010: Consequence assessment and case studies (Report No. 10-04). MAE.
  • Están, J. J. W., Santa María, H., Riddell, R., & Arrate, C. (2017). Influence of the use of external shear keys on the seismic behavior of Chilean highway bridges. Engineering Structures, 147, 613–624. doi:10.1016/j.engstruct.2017.06.015
  • Eurocode. (2005). Eurocode 8: Design of structures for earthquake resistance–Part 2. Bridges, EN 1998-2. Brussels.
  • Feng, M. Q., Kim, J. M., Shinozuka, M., & Purasinghe, R. (2000). Viscoelastic dampers at expansion joints for seismic protection of bridges. Journal of Bridge Engineering, 5(1), 67–74. doi:10.1061/(ASCE)1084-0702(2000)5:1(67)
  • Gao, Q., Yang, M., & Meng, D. (2023). Seismic optimization of high-speed railway bridges considering the running safety of trains in normal service. Structure and Infrastructure Engineering, 19(9), 1283–1298. doi:10.1080/15732479.2021.2023587
  • Goel, R. K., & Chopra, A. K. (2008). Role of shear keys in seismic behavior of bridges crossing fault-rupture zones. Journal of Bridge Engineering, 13(4), 398–408. doi:10.1061/(ASCE)1084-0702(2008)13:4(398)
  • Goldsmith, W. (1960). Impact: The theory and physical behavior of colliding solids. Edward Arnold.
  • Goyal, S., Pinson, E. N., & Sinden, F. W. (1994). Simulation of dynamics of interacting rigid bodies including friction I: General problem and contact model. Engineering with Computers, 10(3), 162–174. doi:10.1007/BF01198742
  • Guan, Z., Huang, Y., Zhang, H., Gai, H., Cai, L., Zhan, B., & Liu, W. (2021). Damage characteristics and analysis of bridge engineering in M 7.4 Qinghai Maduo Earthquake. World Earthquake Engineering, 37(3), 38–45. (in Chinese)
  • Guo, A., Li, Z., & Li, H. (2011). Point-to-surface pounding of highway bridges with deck rotation subjected to bi-directional earthquake excitations. Journal of Earthquake Engineering, 15(2), 274–302. doi:10.1080/13632461003739730
  • Guo, A., Li, Z., Li, H., & Ou, J. (2009). Experimental and analytical study on pounding reduction of base‐isolated highway bridges using MR dampers. Earthquake Engineering & Structural Dynamics, 38(11), 1307–1333. doi:10.1002/eqe.903
  • Guo, A., Zhao, Q., & Li, H. (2012). Experimental study of a highway bridge with shape memory alloy restrainers focusing on the mitigation of unseating and pounding. Earthquake Engineering and Engineering Vibration, 11(2), 195–204. doi:10.1007/s11803-012-0110-8
  • Guo, W., Hu, Y., Gou, H., Du, Q., Fang, W., Jiang, L., & Yu, Z. (2020). Simplified seismic model of CRTS II ballastless track structure on high-speed railway bridges in China. Engineering Structures, 211, 110453. doi:10.1016/j.engstruct.2020.110453
  • Han, Q., Chen, J. Y., Du, X. L., & Huang, C. (2017). Nonlinear seismic response of skewed highway bridges subjected to bidirectional near-fault ground motions. Journal of Bridge Engineering, 22(7), 04017032. doi:10.1061/(ASCE)BE.1943-5592.0001052
  • Han, Q., Du, X., Liu, J., Li, Z., Li, L., & Zhao, J. (2009). Seismic damage of highway bridges during the 2008 Wenchuan earthquake. Earthquake Engineering and Engineering Vibration, 8(2), 263–273. doi:10.1007/s11803-009-8162-0
  • Han, Q., Zhou, Y., Ou, Y., & Du, X. (2017). Seismic behavior of reinforced concrete sacrificial exterior shear keys of highway bridges. Engineering Structures, 139, 59–70. doi:10.1016/j.engstruct.2017.02.034
  • Han, Q., Zhou, Y., Zhong, Z., & Du, X. (2017). Seismic capacity evaluation of exterior shear keys of highway bridges. Journal of Bridge Engineering, 22(2), 04016119. doi:10.1061/(ASCE)BE.1943-5592.0000978
  • Hao, H., Bi, K., Chouw, N., & Ren, W. (2013). State-of-the-art review on seismic induced pounding response of bridge structures. Journal of Earthquake and Tsunami, 07(03), 1350019. doi:10.1142/S179343111350019X
  • He, L. X., Shrestha, B., Hao, H., Bi, K., & Ren, W. X. (2017). Experimental and three-dimensional finite element method studies on pounding responses of bridge structures subjected to spatially varying ground motions. Advances in Structural Engineering, 20(1), 105–124. doi:10.1177/136943321664600
  • He, X. H., Wu, T., Zou, Y. F., Chen, Y. F., Guo, H., & Yu, Z. W. (2017). Recent developments of high-speed railway bridges in China. Structure and Infrastructure Engineering, 13(12), 1584–1595. doi:10.1080/15732479.2017.1304429
  • Hughes, P., & Mosqueda, G. (2020). Evaluation of uniaxial contact models for moat wall pounding simulations. Earthquake Engineering & Structural Dynamics, 49(12), 1197–1215. doi:10.1002/eqe.3285
  • Hu, S., Yang, M., Meng, D., & Hu, R. (2023). Damping performance of the degraded fluid viscous damper due to oil leakage. Structures, 48, 1609–1619. doi:10.1016/j.istruc.2023.01.070
  • Jankowski, R. (2005). Non‐linear viscoelastic modelling of earthquake‐induced structural pounding. Earthquake Engineering & Structural Dynamics, 34(6), 595–611. doi:10.1002/eqe.434
  • Jankowski, R., Wilde, K., & Fujino, Y. (1998). Pounding of superstructure segments in isolated elevated bridge during earthquakes. Earthquake Engineering & Structural Dynamics, 27(5), 487–502. doi:10.1002/(SICI)1096-9845
  • Japan Road Association (JRA). (2019). Specifications for highway bridges, part V seismic design. Japan Road Association.
  • Jennings, P. C. (1971). Engineering features of the San Fernando earthquake of February 9, 1971: EERL Report, No. 71-02. Earthquake Engineering Research Laboratory, California Institute of Technology.
  • Jia, H. Y., Lan, X. L., Zheng, S. X., Li, L. P., & Liu, C. Q. (2019). Assessment on required separation length between adjacent bridge segments to avoid pounding. Soil Dynamics and Earthquake Engineering, 120, 398–407. doi:10.1016/j.soildyn.2019.01.031
  • Jiang, H., Xiong, Z. Y., Zhu, X., & Yang, Q. S. (2010). Parametric study of longitudinal seismic pounding response for RC girder bridge based on Kelvin Impact Model. Advanced Materials Research, 163-167, 4170–4173. doi:10.4028/www.scientific.net/AMR.163-167.4170
  • Jiao, C., Liu, W., Wu, S., Gui, X., Huang, J., Long, P., & Li, W. (2021). Shake table experimental study of curved bridges with consideration of girder-to-girder collision. Engineering Structures, 237, 112216. doi:10.1016/j.engstruct.2021.112216
  • Kang, X., Jiang, L., Bai, Y., & Caprani, C. C. (2017). Seismic damage evaluation of high-speed railway bridge components under different intensities of earthquake excitations. Engineering Structures, 152, 116–128. doi:10.1016/j.engstruct.2017.08.057
  • Kanitkar, R., Aiken, I., & Nishimoto, K. (2006). Viscoelastic dampers for the seismic retrofit of buildings: An overview of advancements in viscoelastic materials and analytical capabilities [Paper presentation]. Proceedings of the 8th US National Conference on Earthquake Engineering, CA, USA.
  • Kaviani, P., Zareian, F., & Taciroglu, E. (2012). Seismic behavior of reinforced concrete bridges with skew-angled seat-type abutments. Engineering Structures, 45, 137–150. doi:10.1016/j.engstruct.2012.06.013
  • Kawashima, K., & Shoji, G. (2000). Effect of restrainers to mitigate pounding between adjacent decks subjected to a strong ground motion [Paper presentation]. Proceedings of the 12th World conference on earthquake engineering, Auckland, New Zealand.
  • Kawashima, K., Unjoh, S., Hoshikuma, J. I., & Kosa, K. (2011). Damage of bridges due to the 2010 Maule, Chile, earthquake. Journal of Earthquake Engineering, 15(7), 1036–1068. doi:10.1080/13632469.2011.575531
  • Kim, S. H., & Shinozuka, M. (2003). Effects of seismically induced pounding at expansion joints of concrete bridges. Journal of Engineering Mechanics, 129(11), 1225–1234. doi:10.1061/(ASCE)0733-9399(2003)129:11(1225)
  • Kun, C., & Chouw, N. (2019a). Estimation of response of skewed bridges considering pounding and supporting soil. Engineering Structures, 184, 469–479. doi:10.1016/j.engstruct.2019.01.084
  • Kun, C., & Chouw, N. (2019b). Influence of ground motion characteristics on seismic response of skewed bridges. Structure and Infrastructure Engineering, 15(6), 798–811. doi:10.1080/15732479.2019.1571516
  • Kun, C., Jiang, L., & Chouw, N. (2017). Influence of pounding and skew angle on seismic response of bridges. Engineering Structures, 148, 890–906. doi:10.1016/j.engstruct.2017.07.024
  • Lee, G. C., & Loh, C. H. (2000). The Chi-Chi, Taiwan, Earthquake of September 21, 1999: Reconnaissance report. Multidisciplinary Center for Earthquake Engineering Research.
  • Leibovich, E., Rutenberg, A., & Yankelevsky, D. (2012). Pounding response of adjacent concrete rods: An experimental study. International Journal of Protective Structures, 3(3), 355–373. doi:10.1260/2041-4196.3.3.355
  • Li, B., Bi, K., Chouw, N., Butterworth, J. W., & Hao, H. (2012). Experimental investigation of spatially varying effect of ground motions on bridge pounding. Earthquake Engineering & Structural Dynamics, 41(14), 1959–1976. doi:10.1002/eqe.2168
  • Li, B., Bi, K., Chouw, N., Butterworth, J. W., & Hao, H. (2013). Effect of abutment excitation on bridge pounding. Engineering Structures, 54, 57–68. doi:10.1016/j.engstruct.2013.03.034
  • Li, J., Peng, T., & Xu, Y. (2008). Damage investigation of girder bridges under the Wenchuan earthquake and corresponding seismic design recommendations. Earthquake Engineering and Engineering Vibration, 7(4), 337–344. doi:10.1007/s11803-008-1005-6
  • Li, J., Tang, H., & Guan, Z. (2017). Shake table test and numerical analysis of a bridge model supported on elastomeric pad bearings. Journal of Earthquake Engineering, 21(4), 604–634. doi:10.1080/13632469.2016.1174751
  • Li, N., Long, G., Fu, Q., Song, H., Ma, C., Ma, K., Xie, Y., & Li, H. (2019). Dynamic mechanical characteristics of filling layer self-compacting concrete under impact loading. Archives of Civil and Mechanical Engineering, 19(3), 851–861. doi:10.1016/j.acme.2019.03.007
  • Li, S., Guo, A., Li, H., & Mao, C. (2016). An analysis of pounding mitigation and stress waves in highway bridges with shape memory alloy pseudo‐rubber shock‐absorbing devices. Structural Control and Health Monitoring, 23(10), 1237–1255. doi:10.1002/stc.1835
  • Li, S., Mao, C., Li, H., & Zhao, Y. (2011). Mechanical properties and theoretical modeling of self-centering shape memory alloy pseudorubber. Smart Materials and Structures, 20(11), 115008–115023. doi:10.1088/0964-1726/20/11/115008
  • Li, Z., Gao, R., & Jia, W. (2019). Design and experimental study on shock-absorbing steel bar with limit function for bridges. Shock and Vibration, 2019, 1–10. doi:10.1155/2019/3096291
  • Liu, C., & Gao, R. (2018). Design method for steel restrainer bars on railway bridges subjected to spatially varying earthquakes. Engineering Structures, 159, 198–212. doi:10.1016/j.engstruct.2018.01.001
  • Liu, K., & Wang, L. H. (2013). Earthquake damage of curved highway bridges in 2008 Wenchuan earthquake. Advanced Materials Research, 838–841, 1571–1576. doi:10.4028/www.scientific.net/AMR.838-841.1571
  • Maleki, S. (2005). Seismic modeling of skewed bridges with elastomeric bearings and side retainers. Journal of Bridge Engineering, 10(4), 442–449. doi:10.1061/(ASCE)1084-0702(2005)10:4(442)
  • Malhotra, P. K. (1998). Dynamics of seismic pounding at expansion joints of concrete bridges. Journal of Engineering Mechanics, 124(7), 794–802. doi:10.1061/(ASCE)0733-9399(1998)124:7(794)
  • Mangalathu, S., Heo, G., & Jeon, J. S. (2018). Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes. Engineering Structures, 162, 166–176. doi:10.1016/j.engstruct.2018.01.053
  • Mehr, M., & Zaghi, A. E. (2019). Contributing factors to seismic force demand on in-span shear keys in multi-frame bridges. Structure and Infrastructure Engineering, 15(2), 206–218. doi:10.1080/15732479.2018.1527372
  • Meng, D., Chen, S., Yang, M., & Hu, S. (2021). Effects of shear keys and track system on the behavior of simply-supported bridges for high-speed trains subjected to transverse earthquake excitations. Advances in Structural Engineering, 24(12), 2607–2621. doi:10.1177/13694332211007398
  • Meng, D., Gao, Q., & Yang, M. (2019). Shaking table tests on transverse pounding effect of high-speed railway simply-supported girder bridges under earthquake excitations. Journal of Vibration and Shock, 38(24), 63–73. (in Chinese)
  • Meng, D., Hu, S., Yang, M., & Hu, R. (2023). Experimental and numerical study on the consequence of seismic-induced transversal poundings for a simply-supported bridge. Structures, 48, 91–107. doi:10.1016/j.istruc.2022.12.086
  • Meng, D., Hu, S., Yang, M., Hu, R., & He, X. (2023). Experimental evaluation of the seismic isolation effectiveness of friction pendulum bearings in bridges considering transverse poundings. Soil Dynamics and Earthquake Engineering, 170, 107926. doi:10.1016/j.soildyn.2023.107926
  • Meng, D., Liu, Q., Yang, M., & Yang, Z. (2022). Seismic vulnerability of simply-supported bridges considering link-slabs in the continuous deck and pounding. Structure and Infrastructure Engineering, 1–19. doi:10.1080/15732479.2022.2033279
  • Meng, D., Yang, M., & Fei, F. (2019). Shake-table tests on the influence of the pounding on transverse seismic responses of high-speed railway simply-supported bridges. Engineering Mechanics, 36(8), 161–170. (in Chinese)
  • Meng, D., Yang, M., Yang, Z., & Chouw, N. (2022). Effect of earthquake-induced transverse poundings on a 32 m span railway bridge isolated by friction pendulum bearings. Engineering Structures, 251, 113538. doi:10.1016/j.engstruct.2021.113538
  • Meng, Q. L., Zhang, M. Z., & Zhou, G. L. (2010). The study on SMA Pseudo-Rubber Metal damper’s control efficiency on aseismic pounding in high-pier bridge in shaking table testing. Advanced Materials Research, 163-167, 4429–4441. doi:10.4028/www.scientific.net/AMR.163-167.4429
  • Meng, X., & Zhu, X. (2006). Pounding behavior of highspeed railway simple supported bridges under the nearfault earthquakes. Journal of Beijing Jiaotong University, 30(4), 73–76. (in Chinese)
  • Miari, M., Choong, K. K., & Jankowski, R. (2021). Seismic pounding between bridge segments: A state-of-the-art review. Archives of Computational Methods in Engineering, 28(2), 495–504. doi:10.1007/s11831-019-09389-x
  • Ministerio de Obras Publicas. (2008). Manual de carreteras – Volumen No3 – Instrucciones ycriterios de diseno. Chile: MOP-DGOP-Direccion de Vialidad. (in Spanish)
  • Ministerio de Obras Publicas. (2017). Manual de carreteras – Volumen No3 – Instrucciones yriterios de diseno. Chile: MOP-DGOP-Direccion de Vialidad. (in Spanish)
  • Mitchell, D., Bruneau, M., Saatcioglu, M., Williams, M., Anderson, D., & Sexsmith, R. (1995). Performance of bridges in the 1994 Northridge earthquake. Canadian Journal of Civil Engineering, 22(2), 415–427. doi:10.1139/l95-050
  • Mitoulis, S. A. (2012). Seismic design of bridges with the participation of seat-type abutments. Engineering Structures, 44, 222–233. doi:10.1016/j.engstruct.2012.05.033
  • Moehle, J., Fenves, G., Mayes, R., Moehle, J., Priestley, N., & Seible, F. (1995). Northridge earthquake of January 17, 1994: Reconnaissance report, volume 1—highway bridges and traffic management. Earthquake Spectra, 11(3), 287–372.
  • Muthukumar, S., & DesRoches, R. (2006). A Hertz contact model with non‐linear damping for pounding simulation. Earthquake Engineering & Structural Dynamics, 35(7), 811–828. doi:10.1002/eqe.557
  • Ngo, T., Mendis, P., Gupta, A., & Ramsay, J. (2007). Blast loading and blast effects on structures–an overview.Electronic Journal of Structural Engineering, 1( 1), 76–91. doi:10.56748/ejse.671
  • Omrani, R., Mobasher, B., Sheikhakbari, S., Zareian, F., & Taciroglu, E. (2017). Variability in the predicted seismic performance of a typical seat-type California bridge due to epistemic uncertainties in its abutment backfill and shear-key models. Engineering Structures, 148, 718–738. doi:10.1016/j.engstruct.2017.07.018
  • Padgett, J. E., DesRoches, R., & Ehlinger, R. (2009). Experimental response modification of a four‐span bridge retrofit with shape memory alloys. Structural Control and Health Monitoring, 17(6), n/a–n/a. doi:10.1002/stc.351
  • Pan, P., Yan, H., Wang, T., Xu, P., & Xie, Q. (2014). Development of steel dampers for bridges to allow large displacement through a vertical free mechanism. Earthquake Engineering and Engineering Vibration, 13(3), 375–388. doi:10.1007/s11803-014-0249-6
  • Park, R., Billings, I. J., Clifton, G. C., Cousins, J., Filiatrault, A., Jennings, D. N., Jones, L. C. P., Perrin, N. D., Rooney, S. L., Sinclair, J., Spurr, D. D., Tanaka, H., & Walker, G. (1995). The Hyogo-ken Nanbu earthquake (the great Hanshin earthquake) of 17 January 1995: Report of the NZNSEE Reconnaissance Team. Bulletin of the New Zealand Society for Earthquake Engineering, 28(1), 1–98. doi:10.5459/bnzsee.28.1.1-98
  • People’s Republic of China National Railway Administration (CNRA-PRC). (2014). Code for design of high speed railway (TB 10621-2014), Beijing, China. CNRA-PRC. (in Chinese)
  • People’s Republic of China National Railway Administration (CNRA-PRC). (2006). Code for seismic design of railway engineering (GB 50111-2006), Beijing China. CNRA-PRC. (in Chinese)
  • People's Republic of China National Transport Administration (CNTA-PRC). (2013). Specification of seismic design for highway engineering (JTG B02-2013), Beijing, China. CNTA-PRC. (in Chinese)
  • Polycarpou, P. C., Komodromos, P., & Polycarpou, A. C. (2013). A nonlinear impact model for simulating the use of rubber shock absorbers for mitigating the effects of structural pounding during earthquakes. Earthquake Engineering & Structural Dynamics, 42(1), 81–100. doi:10.1002/eqe.2194
  • Ruangrassamee, A., & Kawashima, K. (2001). Relative displacement response spectra with pounding effect. Earthquake Engineering & Structural Dynamics, 30(10), 1511–1538. doi:10.1002/eqe.75
  • Ruiz Julian, F. D., Hayashikawa, T., & Obata, T. (2007). Seismic performance of isolated curved steel viaducts equipped with deck unseating prevention cable restrainers. Journal of Constructional Steel Research, 63(2), 237–253. doi:10.1016/j.jcsr.2006.03.008
  • Sakellariadis, L., Agalianos, A., & Anastasopoulos, I. (2018). Simplified method for real‐time seismic damage assessment of motorway bridges: Transverse direction—Accounting for abutment stoppers. Earthquake Engineering & Structural Dynamics, 47(6), 1496–1521. doi:10.1002/eqe.3027
  • Sha, Y. Y., & Hao, H. (2015). Laboratory tests and numerical simulations of CFRP strengthened RC pier subjected to barge impact load. International Journal of Structural Stability and Dynamics, 15(02), 1450037. doi:10.1142/S0219455414500370
  • Shen, X., Wang, X., Ye, Q., & Ye, A. (2017). Seismic performance of transverse steel damper seismic system for long span bridges. Engineering Structures, 141, 14–28. doi:10.1016/j.engstruct.2017.03.014
  • Sheng, X. W., Zheng, W. Q., Zhu, Z. H., Qin, Y. P., & Guo, J. G. (2020). Full-scale fatigue test of unit-plate ballastless track laid on long-span cable-stayed bridge. Construction and Building Materials, 247, 118601. doi:10.1016/j.conbuildmat.2020.118601
  • Shi, Y., Qin, H. G., & Liu, F. Q. (2012). Effect of eccentric pounding on elasto-plastic behavior of a simply supported bridge under transverse earthquake. Applied Mechanics and Materials, 226–228, 1669–1673. doi:10.4028/www.scientific.net/AMM.226-228.1669
  • Shi, Z., & Dimitrakopoulos, E. G. (2017). Comparative evaluation of two simulation approaches of deck-abutment pounding in bridges. Engineering Structures, 148, 541–551. doi:10.1016/j.engstruct.2017.06.077
  • Shrestha, B., & Hao, H. (2016). Parametric study of seismic performance of super-elastic shape memory alloy-reinforced bridge piers. Structure and Infrastructure Engineering, 12(9), 1076–1089. doi:10.1080/15732479.2015.1076856
  • Shrestha, B., Hao, H., & Bi, K. (2014). Effectiveness of using rubber bumper and restrainer on mitigating pounding and unseating damage of bridge structures subjected to spatially varying ground motions. Engineering Structures, 79, 195–210. doi:10.1016/j.engstruct.2014.08.020
  • Shrestha, B., Hao, H., & Bi, K. (2017). Devices for protecting bridge superstructure from pounding and unseating damages: An overview. Structure and Infrastructure Engineering, 13(3), 313–330. doi:10.1080/15732479.2016.1170155
  • Shrestha, B., He, L. X., Hao, H., Bi, K., & Ren, W. X. (2018). Experimental study on relative displacement responses of bridge frames subjected to spatially varying ground motion and its mitigation using superelastic SMA restrainers. Soil Dynamics and Earthquake Engineering, 109, 76–88. doi:10.1016/j.soildyn.2018.03.005
  • Silva, P. F., Megally, S., & Seible, F. (2002). Performance of sacrificial exterior shear keys under simulated seismic loading. ACI Special Publication, 209, 681–700. doi:10.14359/12527
  • Silva, P. F., Megally, S., & Seible, F. (2009). Seismic performance of sacrificial exterior shear keys in bridge abutments. Earthquake Spectra, 25(3), 643–664. doi:10.1193/1.315540
  • Sun, W., Yang, C., Fan, W., Wang, H., & Su, H. (2022). Vehicular impacts on precast concrete bridge piers with grouted sleeve connections. Engineering Structures, 267, 114600. doi:10.1016/j.engstruct.2022.114600
  • Symans, M. D., Charney, F. A., Whittaker, A. S., Constantinou, M. C., Kircher, C. A., Johnson, M. W., & McNamara, R. J. (2008). Energy dissipation systems for seismic applications: Current practice and recent developments. Journal of Structural Engineering, 134(1), 3–21. doi:10.1061/(ASCE)0733-9445(2008)134:1(3)
  • Tegou, S., Mitoulis, S., & Tegos, I. (2010). An unconventional earthquake resistant abutment with transversely directed R/C walls. Engineering Structures, 32(11), 3801–3816. doi:10.1016/j.engstruct.2010.08.024
  • Wang, C. J. (2007). Failure study of a bridge subjected to pounding and sliding under severe ground motions. International Journal of Impact Engineering, 34(2), 216–231. doi:10.1016/j.ijimpeng.2005.07.003
  • Wei, B., Yang, T., Jiang, L., & He, X. (2018). Effects of uncertain characteristic periods of ground motions on seismic vulnerabilities of a continuous track–bridge system of high-speed railway. Bulletin of Earthquake Engineering, 16(9), 3739–3769. doi:10.1007/s10518-018-0326-8
  • Wilches, J., Santa María, H., Riddell, R., & Arrate, C. (2019). Effects of changes in seismic design criteria in the transverse and vertical response of Chilean highway bridges. Engineering Structures, 191, 370–385. doi:10.1016/j.engstruct.2019.04.064
  • Wilson, T., Mahmoud, H., & Chen, S. (2014). Seismic performance of skewed and curved reinforced concrete bridges in mountainous states. Engineering Structures, 70, 158–167. doi:10.1016/j.engstruct.2014.03.039
  • Won, J. H., Mha, H. S., & Kim, S. H. (2015). Effects of the earthquake-induced pounding upon pier motions in the multi-span simply supported steel girder bridge. Engineering Structures, 93, 1–12. doi:10.1016/j.engstruct.2015.03.010
  • Wood, J., & Jennings, P. (1971). Damage to freeway structures in the San Fernando earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 4(3), 347–376. doi:10.5459/bnzsee.4.3.347-376
  • Wu, S. (2019). Investigation on the connection forces of shear keys in skewed bridges during earthquakes. Engineering Structures, 194, 334–343. doi:10.1016/j.engstruct.2019.05.020
  • Xiang, N., Alam, M. S., & Li, J. (2019). Yielding steel dampers as restraining devices to control seismic sliding of laminated rubber bearings for highway bridges: Analytical and experimental study. Journal of Bridge Engineering, 24(11), 04019103. doi:10.1061/(ASCE)BE.1943-5592.0001487
  • Xiang, N., & Li, J. (2016). Seismic performance of highway bridges with different transverse unseating-prevention devices. Journal of Bridge Engineering, 21(9), 04016045. doi:10.1061/(ASCE)BE.1943-5592.0000909
  • Xiang, N., & Li, J. (2018). Effect of exterior concrete shear keys on the seismic performance of laminated rubber bearing-supported highway bridges in China. Soil Dynamics and Earthquake Engineering, 112, 185–197. doi:10.1016/j.soildyn.2018.04.033
  • Xing, S., Halling, M. W., & Meng, Q. (2012). Structural pounding detection by using wavelet scalogram. Advances in Acoustics and Vibration, 2012, 1–10. doi:10.1155/2012/805141
  • Xu, L., Fu, P., & Spencer, B. F. Jr. (2020). Maintaining bridge alignment during seismic events: Shear key design and implementation guidelines. Journal of Bridge Engineering, 25(5), 04020017. doi:10.1061/(ASCE)BE.1943-5592.0001549
  • Yan, B., & Dai, G. (2013). Seismic pounding and protection measures of simply-supported beams considering interaction between continuously welded rail and bridge. Structural Engineering International, 23(1), 61–67. doi:10.2749/101686613X13439149157191
  • Yan, B., Dai, G. L., & Hu, N. (2015). Recent development of design and construction of short span high-speed railway bridges in China. Engineering Structures, 100, 707–717. doi:10.1016/j.engstruct.2015.06.050
  • Yan, B., Liu, S., Pu, H., Dai, G. L., & Cai, X. P. (2017). Elastic-plastic seismic response of CRTS II slab ballastless track system on high-speed railway bridges. Science China Technological Sciences, 60(6), 865–871. doi:10.1007/s11431-016-0222-6
  • Yang, H., & Yin, X. (2015). Transient responses of girder bridges with vertical poundings under near‐fault vertical earthquake. Earthquake Engineering & Structural Dynamics, 44(15), 2637–2657. doi:10.1002/eqe.2601
  • Yang, M. G., Pan, Z. G., & Qiao, J. D. (2014). Influence of train braking force on seismic pounding force of a high-speed railway simply-supported bridges. Journal of Vibration and Shock, 15, 167–173. doi: (in Chinese)
  • Yang, M., Meng, D., & Dai, L. (2018). Transverse seismic pounding effect for simply-supported girder bridges of high-speed railway considering track constraint. Journal of Central South University (Science and Technology), 49(4), 152–160. (in Chinese)
  • Yang, M., Meng, D., Gao, Q., Zhu, Y., & Hu, S. (2019). Experimental study on transverse pounding reduction of a high-speed railway simply-supported girder bridge using rubber bumpers subjected to earthquake excitations. Engineering Structures, 196, 109290. doi:10.1016/j.engstruct.2019.109290
  • Yang, M., Meng, D., Wei, K., & Qiao, J. (2020). Transverse seismic pounding effect and pounding reduction of simply-supported girder bridge for high-speed railway. Journal of Southwest Jiaotong University, 55(1), 100–108. (in Chinese)
  • Yang, Z., Kun, C., Meng, D., & Chouw, N. (2021). Influence of transient and partial footing separation on the seismic response of skewed bridges with soil support. International Journal of Structural Stability and Dynamics, 21(09), 2150132. doi:10.1142/S0219455421501327
  • Ye, K., Li, L., & Zhu, H. (2009). A note on the Hertz contact model with nonlinear damping for pounding simulation. Earthquake Engineering & Structural Dynamics, 38(9), 1135–1142. doi:10.1002/eqe.883
  • Zakeri, B., Padgett, J. E., & Ghodrati Amiri, G. (2015). Fragility assessment for seismically retrofitted skewed reinforced concrete box girder bridges. Journal of Performance of Constructed Facilities, 29(2), 04014043. doi:10.1061/(ASCE)CF.1943-5509.0000502
  • Zhang, X., Hao, H., & Li, C. (2016). Experimental investigation of the response of precast segmental columns subjected to impact loading. International Journal of Impact Engineering, 95, 105–124. doi:10.1016/j.ijimpeng.2016.05.005
  • Zhang, Y., Hu, X., & Zhu, S. (2009). Seismic performance of benchmark base‐isolated bridges with superelastic Cu–Al–Be restraining damping device. Structural Control and Health Monitoring, 16(6), 668–685. doi:10.1002/stc.327
  • Zheng, W., Sheng, X., Zhu, Z., Luo, T., & Liu, Z. (2020). Experimental study on vibration characteristics of unit-plate ballastless track systems laid on long-span bridges using full-scale test rigs. Sensors, 20(6), 1744. doi:10.3390/s20061744
  • Zhu, P., Abe, M., & Fujino, Y. (2002). Modelling three‐dimensional non‐linear seismic performance of elevated bridges with emphasis on pounding of girders. Earthquake Engineering & Structural Dynamics, 31(11), 1891–1913. doi:10.1002/eqe.194

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.