Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Latest Articles
224
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dynamic response of high-speed train-track-bridge coupled system under combined wind and snow

, , , , &
Received 24 May 2022, Accepted 28 Mar 2023, Published online: 04 Jul 2023

References

  • ANSYS. (2007). “Substructuring”. ANSYS Advanced Analysis Techniques Guide.
  • Dadic, R., Mott, R., Lehning, M., & Burlando, P. (2010). Wind influence on snow depth distribution and accumulation over glaciers. Journal of Geophysical Research, 115(F1), F01012. doi:10.1029/2009JF001261
  • FLUENT. (2009). ANSYS FLUENT 12.0 User’s Guide.
  • Gao, G. J., Zhang, Y. N., Zhang, J., Xie, F., Zhang, Y., & Wang, J. B. (2018). Effect of bogie fairings on the snow reduction of a high-speed train bogie under crosswinds using a discrete phase method. Wind and Structures, 27(4), 255–267. doi:10.12989/was.2018.27.4.255
  • Gong, W., Zhu, Z. H., Wang, K., Yang, W. C., Bai, Y., & Ren, J. J. (2021). A real-time co-simulation solution for train-track-bridge interaction. Journal of Vibration and Control, 27(13–14), 1606–1616. doi:10.1177/1077546320946631
  • Gou, H. Y., Long, H., Bao, Y., Chen, G., & Pu, Q. H. (2019). Dynamic behavior of hybrid framed arch railway bridge under moving trains. Structure and Infrastructure Engineering, 15(8), 1015–1024. doi:10.1080/15732479.2019.1594314
  • Gou, H. Y., Li, W. H., Zhou, S. Q., Bao, Y., Zhao, T. Q., Han, B., & Pu, Q. H. (2021). Dynamic response of high-speed train-track-bridge coupling system subjected to simultaneous wind and rain. International Journal of Structural Stability and Dynamics, 21(11), 2150161. doi:10.1142/S0219455421501613
  • Guo, W., Zeng, C., Gou, H. Y., Gu, Q., Wang, T., Zhou, H. M., … Wu, J. L. (2021). Real-time hybrid simulation of high-speed train-track-bridge interactions using the moving load convolution integral method. Engineering Structures, 228, 111537. doi:10.1016/j.engstruct.2020.111537
  • He, X. H., Gai, Y. B., & Wu, T. (2018). Simulation of train–bridge interaction under wind loads: A rigid-flexible coupling approach. International Journal of Rail Transportation, 6(3), 163–182. doi:10.1080/23248378.2017.1415170
  • He, X. H., Wu, T., Zou, Y. F., Chen, Y. F., Guo, H., & Yu, Z. W. (2017). Recent developments of high-speed railway bridges in China. Structure and Infrastructure Engineering, 13(12), 1584–1595. doi:10.1080/15732479.2017.1304429
  • Huang, N., Ren, S., & Zheng, X. J. (2008). Effects of the mid-air collision on sand saltation. Science in China Series G: Physics, Mechanics and Astronomy, 51(9), 1416–1426. doi:10.1007/s11433-008-0122-6
  • Li, H. L., Wang, T. Y., & Wu, G. (2021). Dynamic response prediction of vehicle-bridge interaction system using feedforward neural network and deep long short-term memory network. Structures, 34, 2415–2431. doi:10.1016/j.istruc.2021.09.008
  • Meinke, P., & Mielcarek, A. (1982). Design and evaluation of trucks for high-speed wheel/rail application. In W. O. Schiehlen (Ed.), Dynamics of high-speed vehicles (pp. 281–331). New York City: Springer. doi:10.1007/978-3-7091-2926-5_10
  • Montenegro, P. A., Carvalho, H., Ribeiro, D., Calçada, R., Tokunaga, M., Tanabe, M., & Zhai, W. M. (2021). Assessment of train running safety on bridges: A literature review. Engineering Structures, 241, 112425. doi:10.1016/j.engstruct.2021.112425
  • Mott, R., Schirmer, M., & Lehning, M. (2011). Scaling properties of wind and snow depth distribution in an Alpine catchment. Journal of Geophysical Research, 116(D6), D06106. doi:10.1029/2010JD014886
  • Nishimura, K., Sugiura, K., Nemoto, M., & Maeno, N. (1998). Measurements and numerical simulations of snow-particle saltation. In D. M. McClung (Ed.), Annals of glaciology (Vol. 26, pp. 184–190). Cambridge: Int Glaciological Soc. doi:10.3189/1998AoG26-1-184-190
  • Ohara, N. (2014). Development of snow movement over open terrain for hydrology (SMOOTH) model. 2014 AGU Fall Meeting. https://agu.confex.com/agu/fm14/webprogram/Paper31126.html.
  • Pomeroy, J. W., & Male, D. H. (1992). Steady-state suspension of snow. Journal of Hydrology, 136(1–4), 275–301. doi:10.1016/0022-1694(92)90015-N
  • Premoli, A., Rocchi, D., Schito, P., & Tomasini, G. (2016). Comparison between steady and moving railway vehicles subjected to crosswind by CFD analysis. Journal of Wind Engineering and Industrial Aerodynamics, 156, 29–40. doi:10.1016/j.jweia.2016.07.006
  • TB 10621-2014. (2014). Code for design of high speed railway. Beijing: China. (in Chinese).
  • TB/T 3276-2011. (2011). Code for rails for high speed railway. Beijing: China. (in Chinese).
  • Wang, L. Q. (2017). Comparative analysis of design schemes of simply supported beam of high-speed railway. Science & Technology Information, 11(15), 72–73. (in Chinese). doi:10.16661/j.cnki.1672-3791.2017.11.072
  • Wang, J., Liu, D., Gao, G., Zhang, Y., & Zhang, J.(2019a). Numerical investigation of the effects of sand collision on the aerodynamic behaviour of a high-speed train subjected to yaw angles. Journal of Applied Fluid Mechanics, 12(2), 379–389. doi:10.29252/jafm.12.02.28788
  • Wang, J. B., Zhang, J., Zhang, Y., Liang, X. F., Krajnovic, S., & Gao, G. J. (2019b). Impact of rotation of wheels and bogie cavity shapes on snow accumulating on the bogies of high-speed trains. Cold Regions Science and Technology, 159, 58–70. doi:10.1016/j.coldregions.2018.12.003
  • Xu, L., & Zhai, W. M. (2019). Cross wind effects on vehicle–track interactions: A methodology for dynamic model construction. Journal of Computational and Nonlinear Dynamics, 14(3), 031003. doi:10.1115/1.4042142
  • Zeng, X. H., Wu, H., Lai, J., & Sheng, H. Z. (2014). Influences of aerodynamic loads on hunting stability of high-speed railway vehicles and parameter studies. Acta Mechanica Sinica, 30(6), 889–900. doi:10.1007/s10409-014-0119-5
  • Zeng, Z. P., Liu, F. S., & Wang, W. D. (2022). Three-dimensional train–track–bridge coupled dynamics model based on the explicit finite element method. Soil Dynamics and Earthquake Engineering, 153, 107066. doi:10.1016/j.soildyn.2021.107066
  • Zhai, W. M., & Cai, C. B. (2002). Train/track/bridge dynamic interactions: Simulation and applications. Vehicle System Dynamics, 37(sup1), 653–665. doi:10.1080/00423114.2002.11666270
  • Zhai, W. M., Xia, H., Cai, C. B., Gao, M. M., Li, X. Z., Guo, X. R., … Wang, K. Y. (2013). High-speed train–track–bridge dynamic interactions – Part I: Theoretical model and numerical simulation. International Journal of Rail Transportation, 1(1–2), 3–24. doi:10.1080/23248378.2013.791498
  • Zhai, W. M., & Xia, H. (2011). Train-track-bridge dynamic interaction: Theory and engineering application. Beijing: Science Press. (in Chinese).
  • Zhang, Y., Wang, J. B., Jiang, C., Zhang, J., Wang, T. T., & Gao, G. J. (2022). Investigation of ice and snow accumulations on the bogie areas of high-speed trains using ice wind tunnel experiments. Cold Regions Science and Technology, 199, 103560. doi:10.1016/j.coldregions.2022.103560

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.