Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Latest Articles
127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on the buffeting response of a long-span truss arch bridge during construction based on a large-scale full bridge model wind tunnel test

, , , , , , & show all
Received 22 Mar 2023, Accepted 02 May 2023, Published online: 21 Aug 2023

References

  • Aas-Jakobsen, K., & Strømmen, E. (2001). Time domain buffeting response calculations of slender structures. Journal of Wind Engineering and Industrial Aerodynamics, 89(5), 341–364. doi:10.1016/S0167-6105(00)00070-2
  • Amirinia, G., & Jung, S. (2017). Along-wind buffeting responses of wind turbines subjected to hurricanes considering unsteady aerodynamics of the tower. Engineering Structures, 138, 337–350. doi:10.1016/j.engstruct.2017.02.023
  • Anderson, I., Rizzo, D. M., Huston, D. R., & Dewoolkar, M. M. (2017). Analysis of bridge and stream conditions of over 300 Vermont bridges damaged in Tropical Storm Irene. Structure and Infrastructure Engineering, 13(11), 1437–1450. doi:10.1016/j.engstruct.2017.02.023
  • Bucher, C. G., & Lin, Y. K. (1988). Stochastic stability of bridges considering coupled modes. Journal of Engineering Mechanics, 114(12), 2055–2071. doi:10.1061/(ASCE)0733-9399(1988)114:12(2055)
  • Chang, C. C., Gu, M., & Tang, K. H. (2003). Tuned mass dampers for dual-mode buffeting control of bridges. Journal of Bridge Engineering, 8(4), 237–240. doi:10.1061/(ASCE)1084-0702(2003)8:4(237)
  • Chen, J., Hui, M. C. H., & Xu, Y. L. (2007). A comparative study of stationary and non-stationary wind models using field measurements. Boundary-Layer Meteorology, 122(1), 105–121. doi:10.1007/s10546-006-9085-1
  • Chen, W., Gu, M., & Xiang, H. F. (1995). Study on buffeting response spectrum method for long span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 54–55, 83–89. doi:10.1016/0167-6105(94)00032-9
  • Chen, X. (2015). Analysis of multimode coupled buffeting response of long-span bridges to non-stationary winds with force parameters from stationary wind. Journal of Structural Engineering, 141(4), 04014131. doi:10.1061/(ASCE)ST.1943-541X.0001078
  • Chen, X., Kareem, A., & Matsumoto, M. (2001). Multimode coupled flutter and buffeting analysis of long span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 89(7–8), 649–664. doi:10.1016/S0167-6105(01)00064-2
  • Chen, X., Matsumoto, M., & Kareem, A. (2000). Aerodynamic coupling effects on flutter and buffeting of bridges. Journal of Engineering Mechanics, 126(1), 17–26. doi:10.1061/(ASCE)0733-9399(2000)126:1(17)
  • Chen, Z. Q., Han, Y., Hua, X. G., & Luo, Y. Z. (2009). Investigation on influence factors of buffeting response of bridges and its aeroelastic model verification for Xiaoguan bridge. Engineering Structures, 31(2), 417–431. doi:10.1016/j.engstruct.2008.08.016
  • Cheynet, E. (2016). [Wind-induced vibrations of a suspension bridge: a case study in full-scale] (Doctoral dissertation). University of Stavanger. PhD thesis in Konstuksjonsteknikk og materialteknologi. Retrieved from http://hdl.handle.net/11250/2425472
  • Costa, C., Borri, C., Flamand, O., & Grillaud, G. (2007). Time-domain buffeting simulations for wind–bridge interaction. Journal of Wind Engineering and Industrial Aerodynamics, 95(9–11), 991–1006. doi:10.1016/j.jweia.2007.01.026
  • Cui, W., Zhao, L., & Ge, Y. (2021). Non-gaussian turbulence induced buffeting responses of long-span bridges. Journal of Bridge Engineering, 26(8), 04021057. doi:10.1061/(ASCE)BE.1943-5592.0001747
  • Davenport, A. G. (1961). The application of statistical concepts to the wind loading of structures. Proceedings of the Institution of Civil Engineers, 19(4), 449–472. doi:10.1680/iicep.1961.11304
  • Davenport, A. G. (1962a). The response of slender, line-like structures to a gusty wind. Proceedings of the Institution of Civil Engineers, 23(3), 389–408. doi:10.1680/iicep.1962.10876
  • Davenport, A. G. (1962b). Buffetting of a suspension bridge by storm winds. Journal of the Structural Division, 88(3), 233–270. doi:10.1061/JSDEAG.0000773
  • De Domenico, D., & Ricciardi, G. (2018). An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI). Earthquake Engineering & Structural Dynamics, 47(5), 1169–1192. doi:10.1002/eqe.3011
  • Diana, G., & Omarini, S. (2020). A non-linear method to compute the buffeting response of a bridge validation of the model through wind tunnel tests. Journal of Wind Engineering and Industrial Aerodynamics, 201, 104163. doi:10.1016/j.jweia.2020.104163
  • Diana, G., Rocchi, D., & Belloli, M. (2015). Wind tunnel: A fundamental tool for long-span bridge design. Structure and Infrastructure Engineering, 11(4), 533–555. doi:10.1080/15732479.2014.951860
  • Diana, G., Yamasaki, Y., Larsen, A., Rocchi, D., Giappino, S., Argentini, T., Pagani, A., Villani, M., Somaschini, C., & Portentoso, M. (2013). Construction stages of the long span suspension Izmit Bay Bridge: Wind tunnel test assessment. Journal of Wind Engineering and Industrial Aerodynamics, 123, 300–310. doi:10.1016/j.jweia.2013.09.006
  • Ding, Q., Chen, A., & Xiang, H. (2002). Coupled buffeting response analysis of long-span bridges by the CQC approach. Structural Engineering and Mechanics, 14(5), 505–520. doi:10.12989/sem.2002.14.5.505
  • Ding, Q., Chen, A., & Xiang, H. (2003). Response of coupled buffeting to long-span bridges in frequency-domain. China Civil Engineering Journal, 36(4), 86–93. doi:10.3321/j.issn:1000-131X.2003.04.015
  • Fujino, Y., & Siringoringo, D. (2013). Vibration mechanisms and controls of long-span bridges: A review. Structural Engineering International, 23(3), 248–268. doi:10.2749/101686613X13439149156886
  • Gao, H., Wang, C., Huang, C., Shi, W., & Huo, L. (2020). Development of a frequency-adjustable tuned mass damper (FATMD) for structural vibration control. Shock and Vibration, 2020, 1–16. doi:10.1155/2020/9605028
  • Gong, C., Liu, Z. W., Xie, G., & Gong, P. (2015). Control of wind-induced vibration in large span cable-stayed bridge with high piers during cantilever construction stages. Engineering Mechanics, 32(supplement), 122–128. doi:10.6052/j.issn.1000-4750.2014.05.S005
  • Gu, M., Chen, S. R., & Chang, C. C. (2001). Parametric study on multiple tuned mass dampers for buffeting control of Yangpu Bridge. Journal of Wind Engineering and Industrial Aerodynamics, 89(11–12), 987–1000. doi:10.1016/S0167-6105(01)00094-0
  • Hernández-Barrios, H., Huergo, I. F., Arce-León, C., & Patlán, C. M. (2020). Unified shear-flexural model for vibration control of buildings using passive dynamic absorbers. Shock and Vibration, 2020, 1–25. doi:10.1155/2020/8810482
  • Huang, H., & Chang, W. S. (2020). Re-tuning an off-tuned tuned mass damper by adjusting temperature of shape memory alloy: Exposed to wind action. Structures, 25, 180–189. doi:10.1016/j.istruc.2020.02.025
  • Huang, Z., Xu, Y., Tao, T., & Zhan, S. (2020). Time-varying power spectra and coherences of non-stationary typhoon winds. Journal of Wind Engineering and Industrial Aerodynamics, 198, 104115. doi:10.1016/j.jweia.2020.104115
  • Huergo, I. F., Hernández, B. H., & Gómez, M. R. (2022). Analytical simulation of 3D wind-induced vibrations of rectangular tall buildings in time domain. Shock and Vibration, 2022, 1–26. doi:10.1155/2022/7283610
  • Hui, M. C. (2013). Full-bridge aeroelastic model wind tunnel tests for the Stonecutters bridge. HKIE Transactions, 20(2), 109–123. doi:10.1080/1023697X.2013.794554
  • Hui, M. C., Ding, Q. S., & Xu, Y. L. (2005). Buffeting response analysis of stonecutters bridge. HKIE Transactions, 12(2), 8–21. doi:10.1080/1023697X.2005.10667998
  • Jain, A., Jones, N. P., & Scanlan, R. H. (1996). Coupled flutter and buffeting analysis of long-span bridges. Journal of Structural Engineering, 122(7), 716–725. doi:10.1061/(ASCE)0733-9445(1996)122:7(716)
  • Jian, B., Li, M., Li, M., & Su, Y. (2022). Influence of wind yaw angle and pylon interference on the buffeting responses of cable-stayed bridges during construction. Structure and Infrastructure Engineering, 18(9), 1350–1364. doi:10.1080/15732479.2021.1907599
  • Jian, B., Su, Y., & Li, M. (2020). Buffeting response of cable-stayed bridge during construction under skew winds and pylon interference. KSCE Journal of Civil Engineering, 24(10), 2971–2979. doi:10.1007/s12205-020-1822-3
  • Katsuchi, H., Jones, N. P., & Scanlan, R. H. (1999). Multimode coupled flutter and buffeting analysis of the Akashi-Kaikyo bridge. Journal of Structural Engineering, 125(1), 60–70. doi:10.1061/(ASCE)0733-9445(1999)125:1(60)
  • Kavrakov, I., & Morgenthal, G. (2017). A comparative assessment of aerodynamic models for buffeting and flutter of long-span bridges. Engineering, 3(6), 823–838. doi:10.1016/j.eng.2017.11.008
  • Kim, H. K., Kim, K. T., Lee, H., & Kim, S. (2013). Performance of unpretensioned wind stabilizing cables in the construction of a cable-stayed bridge. Journal of Bridge Engineering, 18(8), 722–734. doi:10.1061/(ASCE)BE.1943-5592.0000405
  • Kim, H. K., Shinozuka, M., & Chang, S. P. (2004). Geometrically nonlinear buffeting response of a cable-stayed bridge. Journal of Engineering Mechanics, 130(7), 848–857. doi:10.1061/(ASCE)0733-9399(2004)130:7(848)
  • Li, F., Zou, L., Song, J., Liang, S., & Chen, Y. (2021). Investigation of the spatial coherence function of wind loads on lattice frame structures. Journal of Wind Engineering and Industrial Aerodynamics, 215, 104675. doi:10.1016/j.jweia.2021.104675
  • Li, M., Li, M., & Sun, Y. (2021). Effects of turbulence integral scale on the buffeting response of a long-span suspension bridge. Journal of Sound and Vibration, 490, 115721. doi:10.1016/j.jsv.2020.115721
  • Li, Y., Togbenou, K., Xiang, H., & Chen, N. (2017). Simulation of non-stationary wind velocity field on bridges based on Taylor series. Journal of Wind Engineering and Industrial Aerodynamics, 169, 117–127. doi:10.1016/j.jweia.2017.07.005
  • Lyu, L., Bing, C., Zhong, H., Gu, Y., & Guo, Z. (2019). Study on nonlinear stability of structure for main bridge of fifth Changjiang River Bridge in Nanjing. Bridge Construction, 49(4), 40–45. doi:10.3969/j.issn.1003-4722.2019.04.008
  • Lin, Y. K., & Li, Q. C. (1993). New stochastic theory for bridge stability in turbulent flow. Journal of Engineering Mechanics, 119(1), 113–127. doi:10.1061/(ASCE)0733-9399(1993)119:1(113)
  • Ma, C. M., Duan, Q. S., & Liao, H. L. (2018). Experimental investigation on aerodynamic behavior of a long span cable-stayed bridge under construction. KSCE Journal of Civil Engineering, 22(7), 2492–2501. doi:10.1007/s12205-017-0402-7
  • Ma, T., Ge, Y., Yang, Y., & Guo, Z. (2012). Effects of temporary piers on buffeting control of longest double-cantilever’s construction state in triple-tower cable-stayed bridge. Journal of Huazhong University of Science and Technology: Natural Science Edition, 40(07), 110–114. doi:10.13245/j.hust.2012.07.025
  • Mannini, C., Barni, N., & Morano, S. G. (2022). Multimodal flutter of a long-span suspension bridge in service and during construction. Structural Engineering International, 1–12. doi:10.1080/10168664.2022.2090484
  • Mignolet, M. P., & Spanos, P. D. (1990). MA to ARMA modeling of wind. Journal of Wind Engineering and Industrial Aerodynamics, 36, 429–438. doi:10.1016/0167-6105(90)90326-8
  • Ministry of Transport of the People’s Republic of China (2018). Wind-resistant design specification for highway bridges (JTG/T-3360-01-2018). Beijing: China Communications Press.
  • Moir, G., Edmonds, C., Walser, P., & Romberg, M. (2010). Construction engineering of Phu My cable-stayed bridge, Vietnam. Structural Engineering International, 20(3), 331–337. doi:10.2749/101686610792016664
  • Møller, R. N., Krenk, S., & Svendsen, M. N. (2020). Time simulation of aerodynamic response of long-span bridges to turbulent wind. Journal of Wind Engineering and Industrial Aerodynamics, 199, 104060. doi:10.1016/j.jweia.2019.104060
  • Petrini, F., Giaralis, A., & Wang, Z. (2020). Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants’ comfort serviceability performance and energy harvesting. Engineering Structures, 204, 109904. doi:10.1016/j.engstruct.2019.109904
  • Scanlan, R. H. (1978). The action of flexible bridges under wind, II: Buffeting theory. Journal of Sound and Vibration, 60(2), 201–211. doi:10.1016/S0022-460X(78)80029-7
  • Scanlan, R. H. (1987). Interpreting aeroelastic models of cable‐stayed bridges. Journal of Engineering Mechanics, 113(4), 555–575. doi:10.1061/(ASCE)0733-9399(1987)113:4(555)
  • Scanlan, R. H. (1993). Bridge buffeting by skew winds in erection stages. Journal of Engineering Mechanics, 119(2), 251–269. doi:10.1061/(ASCE)0733-9399(1993)119:2(251)
  • Scanlan, R. H., Béliveau, J. G., & Budlong, K. S. (1974). Indicial aerodynamic functions for bridge decks. Journal of the Engineering Mechanics Division, 100(4), 657–672. doi:10.1061/JMCEA3.0001912
  • Scanlan, R. H., & Gade, R. H. (1977). Motion of suspended bridge spans under gusty wind. Journal of the Structural Division, 103(9), 1867–1883. doi:10.1061/JSDEAG.0004726
  • Snaiki, R., & Wu, T. (2018). A semi-empirical model for mean wind velocity profile of landfalling hurricane boundary layers. Journal of Wind Engineering and Industrial Aerodynamics, 180, 249–261. doi:10.1016/j.jweia.2018.08.004
  • Su, Y., Di, J., Li, S., Jian, B., & Liu, J. (2022). Buffeting response prediction of long-span bridges based on different wind tunnel test techniques. Applied Sciences, 12(6), 3171. doi:10.3390/app12063171
  • Sun, D. K., Xu, Y. L., Ko, J. M., & Lin, J. H. (1999). Fully coupled buffeting analysis of long-span cable-supported bridges: Formulation. Journal of Sound and Vibration, 228(3), 569–588. doi:10.1006/jsvi.1999.2425
  • Tao, T., Wang, H., & Wu, T. (2018). Parametric study on buffeting performance of a long-span triple-tower suspension bridge. Structure and Infrastructure Engineering, 14(3), 381–399. doi:10.1080/15732479.2017.1354034
  • Tao, T., Wang, H., Yao, C., & He, X. (2017). Parametric sensitivity analysis on the buffeting control of a long-span triple-tower suspension bridge with MTMD. Applied Sciences, 7(4), 395. doi:10.3390/app7040395
  • Wang, C. Q., Li, Z. L., Yan, Z. T., & Xiao, Z. Z. (2012). Experimental investigation on wind-resistant behavior of Chaotianmen Yangtze River Bridge. Experimental Techniques, 36(4), 26–38. doi:10.1111/j.1747-1567.2011.00754.x
  • Wu, B., Liao, H., Shen, H., Wang, Q., Mei, H., & Li, Z. (2022). Multimode coupled nonlinear flutter analysis for long-span bridges by considering dependence of flutter derivatives on vibration amplitude. Computers & Structures, 260, 106700. doi:10.1016/j.compstruc.2021.106700
  • Wu, B., Shen, H., Liao, H., Wang, Q., Zhang, Y., & Li, Z. (2022). Insight into the intrinsic time-varying aerodynamic properties of a truss girder undergoing a flutter with subcritical Hopf bifurcation. Communications in Nonlinear Science and Numerical Simulation, 112, 106472. doi:10.1016/j.cnsns.2022.106472
  • Xing, C., Wang, H., Li, A., & Xu, Y. (2014). Study on wind-induced vibration control of a long-span cable-stayed bridge using TMD-type counterweight. Journal of Bridge Engineering, 19(1), 141–148. doi:10.1061/(ASCE)BE.1943-5592.0000500
  • Xu, Y. L., Sun, D. K., Ko, J. M., & Lin, J. H. (2000). Fully coupled buffeting analysis of Tsing Ma suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics, 85(1), 97–117. doi:10.1016/S0167-6105(99)00133-6
  • Xue, S., Ko, J. M., & Xu, Y. L. (2002). Wind-induced vibration control of bridges using liquid column damper. Earthquake Engineering and Engineering Vibration, 1(2), 271–280. doi:10.1007/s11803-002-0072-3
  • Yan, L., Ren, L., He, X., Li, Y., Du, B., & Zhong, R. (2020). Experimental study of buffeting control of Pingtang Bridge during construction. Journal of Bridge Engineering, 25(8), 05020004. doi:10.1061/(ASCE)BE.1943-5592.0001577
  • Zhao, N., & Huang, G. Q. (2020). Wind velocity field simulation based on enhanced closed-form solution of Cholesky decomposition. Journal of Engineering Mechanics, 146(2), 04019128. doi:10.1061/(ASCE)EM.1943-7889.0001712
  • Zhu, L. D., Wang, M., Wang, D. L., Guo, Z. S., & Cao, F. C. (2007). Flutter and buffeting performances of Third Nanjing Bridge over Yangtze River under yaw wind via aeroelastic model test. Journal of Wind Engineering and Industrial Aerodynamics, 95(9–11), 1579–1606. doi:10.1016/j.jweia.2007.02.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.