Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Latest Articles
198
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Shaking table test to investigate the size effect on the seismic response of a low-cost friction pendulum system

, ORCID Icon, , , , & show all
Received 21 Dec 2022, Accepted 09 Jul 2023, Published online: 12 Sep 2023

References

  • Akiyama, M., & Frangopol, D. M. (2013). Life-cycle design of bridges under multiple hazards: Earthquake, tsunami, and continuous deterioration. Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures - Proceedings of the 11th International Conference on Structural Safety and Reliability, ICOSSAR 2013, 3–16.
  • Akiyama, M., Frangopol, D. M., & Ishibashi, H. (2020). Toward life-cycle reliability-, risk- and resilience-based design and assessment of bridges and bridge networks under independent and interacting hazards: Emphasis on earthquake, tsunami and corrosion. Structure and Infrastructure Engineering, 16(1), 26–50. doi:10.1080/15732479.2019.1604770
  • Akiyama, M., Frangopol, D. M., & Mizuno, K. (2014). Performance analysis of Tohoku-Shinkansen viaducts affected by the 2011 Great East Japan earthquake. Structure and Infrastructure Engineering, 10(9), 1228–1247. doi:10.1080/15732479.2013.806559
  • Akiyama, M., Matsuzaki, H., Dang, H. T., & Suzuki, M. (2012). Reliability-based capacity design for reinforced concrete bridge structures. Structure and Infrastructure Engineering, 8(2), 125–134. doi:10.1080/15732479.2010.507707
  • Bao, Y., Becker, T. C., & Hamaguchi, H. (2017). Failure of double friction pendulum bearings under pulse-type motions. Earthquake Engineering & Structural Dynamics, 46(5), 715–732. doi:10.1002/eqe.2827
  • Brito, M. B., Akiyama, M., Ichikawa, Y., Yamaguchi, H., Honda, R., & Ishigaki, N. (2020). Bidirectional shaking table tests of a low-cost friction sliding system with flat-inclined surfaces. Earthquake Engineering & Structural Dynamics, 49(8), 817–837. doi:10.1002/eqe.3266
  • Brito, M. B., Akiyama, M., Seto, T., Honda, R., & Ishigaki, N. (2022). Shaking table test of a friction sliding system on a concrete member with variable curvature fabricated by a three-dimensional printer. Journal of Earthquake Engineering, 26(16), 8332–8358. doi:10.1080/13632469.2021.1991515
  • Brito, M. B., Ishibashi, H., & Akiyama, M. (2019). Shaking table tests of a reinforced concrete bridge pier with a low-cost sliding pendulum system. Earthquake Engineering & Structural Dynamics, 48(3), 366–386. doi:10.1002/eqe.3140
  • Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O'Rourke, T. D., Reinhorn, A. M., … von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752. doi:10.1193/1.1623497
  • Calvi, P. M., Moratti, M., & Calvi, G. M. (2016). Seismic isolation devices based on sliding between surfaces with variable friction coefficient. Earthquake Spectra, 32(4), 2291–2315. doi:10.1193/091515EQS139M
  • Cardone, D. (2012). Re-centring capability of flag-shaped seismic isolation systems. Bulletin of Earthquake Engineering, 10(4), 1267–1284. doi:10.1007/s10518-012-9343-1
  • Cardone, D., Gesualdi, G., & Brancato, P. (2015). Restoring capability of friction pendulum seismic isolation systems. Bulletin of Earthquake Engineering, 13(8), 2449–2480. doi:10.1007/s10518-014-9719-5
  • Chang, K. C., Hwang, J. S., & Lee, G. C. (1990). Analytical Model for Sliding Behavior of Teflon‐Stainless Steel Interfaces. Journal of Engineering Mechanics, 116(12), 2749–2763. doi:10.1061/(ASCE)0733-9399(1990)116:12(2749)
  • Chowdhury, M. A., Khalil, M. K., Nuruzzaman, D. M., & Rahaman, M. L. (2011). The effect of sliding speed and normal load on friction and wear property of aluminum. International Journal of Mechanical & Mechatronics Engineering, 11(1), 53–57.
  • Constantinou, M. C., Kartoum, A., Reinhorn, A. M., & Bradford, P. F. (1991). Experimental and theoretical study of a sliding isolation system for bridges. Technical Report NCEER‐91‐0027.
  • Dazio, A. (2004). Residual displacements in capacity designed reinforced concrete structures. Proceeding of the 13th World Conference on Earthquake Engineering, 2399.
  • Fenz, D. M., & Constantinou, M. C. (2008). Spherical sliding isolation bearings with adaptive behavior: Experimental verification. Earthquake Engineering & Structural Dynamics, 37(2), 185–205. doi:10.1002/eqe.750
  • Furinghetti, M., Pavese, A., Quaglini, V., & Dubini, P. (2019). Experimental investigation of the cyclic response of double curved surface sliders subjected to radial and bidirectional sliding motions. Soil Dynamics and Earthquake Engineering, 117, 190–202. doi:10.1016/j.soildyn.2018.11.020
  • Igarashi, A., Shiraishi, H., Adachi, Y., Uno, H., & Sato, T. (2012). Seismic response control of bridges using UPSS combined with energy dissipation devices. 15th World Conference on Earthquake Engineering.
  • Japan Road Association. (1996). Specification for highway bridges Part V: Seismic design. Maruzen.
  • Kawashima, K., & Matsuzaki, H. (2012). Damage of road bridges by 2011 Great East Japan (Tohoku) Earthquake. Proceeding of the 15th World Conference on Earthquake.
  • Kumar, M., Whittaker, A. S., & Constantinou, M. C. (2015). Characterizing friction in sliding isolation bearings. Earthquake Engineering & Structural Dynamics, 44(9), 1409–1425. doi:10.1002/eqe.2524
  • Mosqueda, G., Whittaker, A. S., & Fenves, G. L. (2004). Characterization and modeling of friction pendulum bearings subjected to multiple components of excitation. Journal of Structural Engineering, 130(3), 433–442. doi:10.1061/(ASCE)0733-9445(2004)130:3(433)
  • Nicoletti, J. P. (1996). Seismic design and retrofit of bridges. Earthquake Spectra, 12(3), 637–638. doi:10.1193/1.1585901
  • Ogawa, K., Saitoh, T., Tamaki, T., Sakai, F., Nishida, T., & Ha, D. H. (1998). Experimental study on isolation system with friction damping for bridge structures. Proceedings of the 2nd World Conference on Structural Control (pp. 885–8). Tokyo, Japan.
  • Okamoto, S., Fukasawa, Y., Fujii, S., & Ozaki, D. (1995). Dynamic behavior of a bridge with sliding type base isolation system during earthquake. Doboku Gakkai Ronbunshu, 1995(513), 191–200. (in Japanese) doi:10.2208/jscej.1995.513_191
  • Ponzo, F. C., di Cesare, A., Leccese, G., & Nigro, D. (2017). Shake table testing on restoring capability of double concave friction pendulum seismic isolation systems. Earthquake Engineering & Structural Dynamics, 46(14), 2337–2353. doi:10.1002/eqe.2907
  • Quaglini, V., Dubini, P., Furinghetti, M., & Pavese, A. (2022). Assessment of scale effects in the experimental evaluation of the coefficient of friction of sliding isolators. Journal of Earthquake Engineering, 26(1), 525–545. doi:10.1080/13632469.2019.1687054
  • Ryan, K. L., & Chopra, A. K. (2004). Estimating the seismic displacement of friction pendulum isolators based on non-linear response history analysis. Earthquake Engineering & Structural Dynamics, 33(3), 359–373. doi:10.1002/eqe.355
  • Sakai, J., & Mahin, S. A. (2004). Mitigation of residual displacements of circular reinforced concrete bridge columns. Proceeding of the 13th World Conference on Earthquake Engineering, 1622.
  • Takagi, J., & Wada, A. (2019). Recent earthquakes and the need for a new philosophy for earthquake-resistant design. Soil Dynamics and Earthquake Engineering, 119, 499–507. doi:10.1016/j.soildyn.2017.11.024
  • Takahashi, Y., & Hoshikuma, J. (2013). Damage to road bridges induced by ground motion in the 2011 great east Japan earthquake. Journal of JSCE, 1(1), 398–410. doi:10.2208/journalofjsce.1.1_398
  • Trifunac, M. D. (1971). Zero baseline correction of strong-motion accelerograms. Bulletin of the Seismological Society of America, 61(5), 1201–1211. doi:10.1785/BSSA0610051201
  • Tsai, C. S., Chen, W. S., Chiang, T. C., & Chen, B. J. (2006). Component and shaking table tests for full-scale multiple friction pendulum system. Earthquake Engineering & Structural Dynamics, 35(13), 1653–1675. doi:10.1002/eqe.598
  • Tsopelas, P., Constantinou, M. C., Kim, Y. S., & Okamoto, S. (1996). Experimental study of FPS system in bridge seismic isolation. Earthquake Engineering & Structural Dynamics, 25(1), 65–78. doi:10.1002/(SICI)1096-9845(199601)25:1<65::AID-EQE536>3.0.CO;2-A
  • Wang, C., Zhao, J., Zhu, L., & Bao, Y. (2016). Effects of vertical excitation on the seismic performance of a seismically isolated bridge with sliding friction bearings. Earthquake Engineering and Engineering Vibration, 15(1), 187–196. doi:10.1007/s11803-016-0315-3
  • Zayas, V., Low, S., & Mahin, S. (1990). A simple pendulum technique for achieving seismic isolation. Earthquake Spectra, 6(2), 317–333. doi:10.1193/1.1585573

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.