Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Latest Articles
287
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Random field modelling of spatial variability in concrete – a review

ORCID Icon, ORCID Icon &
Received 02 Feb 2023, Accepted 05 May 2023, Published online: 21 Aug 2023

References

  • Aloisio, A., Pasca, D. P., Di Battista, L., Rosso, M. M., Cucuzza, R., Marano, G. C., & Alaggio, R. (2022). Indirect assessment of concrete resistance from FE model updating and Young’s modulus estimation of a multi-span PSC viaduct: Experimental tests and validation. Structures, 37, 686–697. doi:10.1016/j.istruc.2022.01.045
  • Aloisio, A., Rosso, M. M., Fragiacomo, M., & Alaggio, R. (2023, March). Fragility estimate of railway bridges due to concrete fatigue. Structures, 49, 70–87). doi:10.1016/j.istruc.2023.01.123
  • Betz, W., Papaioannou, I., & Straub, D. (2014). Numerical methods for the discretization of random fields by means of the Karhunen-Loève expansion. Computer Methods in Applied Mechanics and Engineering, 271, 109–129. doi:10.1016/j.cma.2013.12.010
  • Bocchini, P., & Deodatis, G. (2008). Critical review and latest developments of a class of simulation algorithms for strongly non-Gaussian random fields. Probabilistic Engineering Mechanics, 23(4), 393–407. doi:10.1016/j.probengmech.2007.09.001
  • Botte, W., & Caspeele, R. (2021). Accounting for spatial variability in partial factor based design verifications. In IABSE Congress Ghent 2021 - Structural Engineering for Future Societal Needs (pp. 1805–1812). Ghent, Belgium. doi:10.2749/ghent.2021.1805
  • CEN. (2005). EN 1992-1-1: Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings.
  • Criel, P., Caspeele, R., & Taerwe, L. (2014). Bayesian updated correlation length of spatial concrete properties using limited data. Computers and Concrete, 13(5), 659–677. doi:10.12989/cac.2014.13.5.659
  • De Vasconcellos Real, M., Campos Filho, A., & Maestrini, S. R. (2003). Response variability in reinforced concrete structures with uncertain geometrical and material properties. Nuclear Engineering and Design, 226(3), 205–220. doi:10.1016/S0029-5493(03)00110-9
  • Deodatis, G. (1991). Weighted integral method. I: Stochastic stiffness matrix. Journal of Engineering Mechanics, 117(8), 1851–1864. doi:10.1061/(ASCE)0733-9399(1991)117:8(1851)
  • Der Kiureghian, A., & Ke, J. B. (1988). The stochastic finite element method in structural reliability. Probabilistic Engineering Mechanics, 3(2), 83–91. doi:10.1016/0266-8920(88)90019-7
  • DIANA FEA BV. (2017). Random fields for non-linear finite element analysis of reinforced concrete structures.
  • Engelund, S., & Sørensen, J. D. (1998). A probabilistic model for chloride-ingress and initiation of corrosion in reinforced concrete structures. Structural Safety, 20(1), 69–89. doi:10.1016/S0167-4730(97)00022-2
  • Englund, S. (1997). Probabilistic models and computational methods for chloride ingress in concrete. Aalborg: Aalborg University.
  • Fenton, G. A. (1994). A random field excursion model of salt-induced concrete delamination. Journal of Research of the National Institute of Standards and Technology, 99(4), 475–483. doi:10.6028/jres.099.045
  • Fenton, G. A. (1999). Random field modeling of CPT data. Journal of Geotechnical and Geoenvironmental Engineering, 125(6), 486–498. doi:10.1061/(ASCE)1090-0241(1999)125:6(486)
  • fib. (2006). Model code for service life design. Fib Bulletin 34 doi:10.35789/fib.BULL.0034
  • Firouzi, A., & Rahai, A. (2013). Reliability assessment of concrete bridges subject to corrosion-induced cracks during life cycle using artificial neural networks. Computers and Concrete, 12(1), 91–107. doi:10.12989/cac.2013.12.1.091
  • Gardoni, P., Der Kiureghian, A., & Mosalam, K. M. (2002). Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations. Journal of Engineering Mechanics, 128(10), 1024–1038. doi:10.1061/(ASCE)0733-9399(2002)128:10(1024)
  • Geyer, S., Papaioannou, I., Kunz, C., & Straub, D. (2020). Reliability assessment of large hydraulic structures with spatially distributed measurements. Structure and Infrastructure Engineering, 16(4), 599–612. doi:10.1080/15732479.2019.1652331
  • Grigoriu, M. (1995). Applied non-gaussian processes: Examples, theory, simulation, linear random vibration, and MATLAB solutions(Book). Englewood Cliffs, NJ: Prentice Hall, Inc.
  • Hajializadeh, D., OBrien, E. J., & Stewart, M. G. (2016). The sensitivity of bridge safety to spatial correlation of load and resistance. Structures, 5, 23–34. doi:10.1016/j.istruc.2015.07.002
  • Hajializadeh, D., Stewart, M. G., Enright, B., & OBrien, E. (2016). Spatial time-dependent reliability analysis of reinforced concrete slab bridges subject to realistic traffic loading. Structure and Infrastructure Engineering, 12(9), 1137–1152. doi:10.1080/15732479.2015.1086385
  • Haldar, A., & Mahadevan, S. (2000). Reliability assessment using stochastic finite element analysis. Hoboken, NJ:John Wiley & Sons.
  • Huang, Q., Gardoni, P., & Hurlebaus, S. (2009). Probabilistic capacity models and fragility estimates for reinforced concrete columns incorporating NDT data. Journal of Engineering Mechanics, 135(12), 1384–1392. doi:10.1061/(ASCE)0733-9399(2009)135:12(1384)
  • JCSS. (2001). Probabilistic model code. Retrieved from http://www.jcss.ethz.ch.
  • Karimi, A. R. (2001). Probabilistic assessment of deterioration and strength of concrete bridge beams and slabs. London: Imperial College of Science, Technology and Medicine.
  • Kersner, Z., Novak, D., Teply, B., & Rusina, R. (1998). Modeling of deterioration of concrete structures by stochastic finite element method. In A. A. Balkema (Ed.), 7th International Conference on Structural Safety and Reliability, ICOSSAR 97, Kyoto, Japan.
  • Kessler, S., Strauss, A., & Caspeele, R. (2017). Present and future probabilistic challenges for maintenance of reinforced concrete structures. In 14th International Probabilistic Workshop (pp. 521–537). doi:10.1007/978-3-319-47886-9
  • Lee, T. H., & Mosalam, K. M. (2004). Probabilistic fiber element modeling of reinforced concrete structures. Computers & Structures, 82(27), 2285–2299. doi:10.1016/j.compstruc.2004.05.013
  • Li, C.-C., & Der Kiureghian, A. (1993). Optimal discretization of random fields. Journal of Engineering Mechanics, 119(6), 1136–1154. doi:10.1061/(ASCE)0733-9399(1993)119:6(1136)
  • Li, Q., & Ye, X. (2018, February). Surface deterioration analysis for probabilistic durability design of RC structures in marine environment. Structural Safety, 75, 13–23. doi:10.1016/j.strusafe.2018.05.007
  • Li, Y. (2004). Effect of spatial variability on maintenance and repair decisions for concrete structures. Delft, Netherlands: Delft University.
  • Liu, P. L., & Der Kiureghian, A. (1986). Multivariate distribution models with prescribed marginals and covariances. Probabilistic Engineering Mechanics, 1(2), 105–112. doi:10.1016/0266-8920(86)90033-0
  • Liu, W. K., Belytschko, T., & Mani, A. (1986). Random field finite elements. International Journal for Numerical Methods in Engineering, 23(10), 1831–1845. doi:10.1002/nme.1620231004
  • Malioka, V. (2009). Condition indicators for the assessment of local and spatial deterioration of concrete structures. Zürich: vdf Hochschulverlag AG an der ETH Zürich. doi:10.3929/ethz-a-010782581
  • Malioka, V., Faber, M. H., Leemann, A., & Hoffmann, C. C. (2007). Durability performance acceptance criteria for concrete structures. In Life-Cycle Cost and Performance of Civil Infrastructure Systems - Proceedings of the 5th International Workshop on Life-Cycle Cost Analysis and Design of Civil Infrastructure Systems (pp. 249–257).
  • Matthies, H. G., Brenner, C. E., Bucher, C. G., & Soares, C. G. (1997). Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements. Structural Safety, 19(3), 283–336. doi:10.1016/S0167-4730(97)00013-1
  • O’Connor, A., & Kenshel, O. (2013). Experimental evaluation of the scale of fluctuation for spatial variability modeling of chloride-induced reinforced concrete corrosion. Journal of Bridge Engineering, 18(1), 3–14. doi:10.1061/(ASCE)BE.1943-5592.0000370
  • Pedrosa, F., & Andrade, C. (2021). Spatial variability of concrete electrical resistivity and corrosion rate in laboratory conditions. Construction and Building Materials, 306, 124777. doi:10.1016/j.conbuildmat.2021.124777
  • Peng, J., Tang, H., Xiao, L., Cheng, X., & Zhang, J. (2021). Chloride diffusion and time to corrosion initiation of reinforced concrete structures. Magazine of Concrete Research, 73(15), 757–770. doi:10.1680/jmacr.19.00276
  • Schneider, R., Fischer, J., Bügler, M., Nowak, M., Thöns, S., Borrmann, A., & Straub, D. (2015). Assessing and updating the reliability of concrete bridges subjected to spatial deterioration–principles and software implementation. Structural Concrete, 16(3), 356–365. doi:10.1002/suco.201500014
  • Shinozuka, M., & Deodatis, G. (1988). Response variability of stochastic finite element systems. Journal of Engineering Mechanics, 114(3), 499–519. doi:10.1061/(ASCE)0733-9399(1988)114:3(499)
  • Srivaranun, S., Akiyama, M., Masuda, K., Frangopol, D. M., & Maruyama, O. (2022). Random field-based reliability updating framework for existing RC structures incorporating the effect of spatial steel corrosion distribution. Structure and Infrastructure Engineering, 18(7), 967–982. doi:10.1080/15732479.2021.1995445
  • Sterrit, G., Chryssanthopoulos, M. K., & Shetty, N. K. (2001, March 21–23). Reliability based inspection planning for RC highway bridges. In International Conference Malta.
  • Stewart, M. G., & Mullard, J. A. (2007). Spatial time-dependent reliability analysis of corrosion damage and the timing of first repair for RC structures. Engineering Structures, 29(7), 1457–1464. doi:10.1016/j.engstruct.2006.09.004
  • Stewart, M. G., & Suo, Q. (2009). Extent of spatially variable corrosion damage as an indicator of strength and time-dependent reliability of RC beams. Engineering Structures, 31(1), 198–207. doi:10.1016/j.engstruct.2008.08.011
  • Straub, D. (2011). Reliability updating with inspection and monitoring data in deteriorating reinforced concrete slabs. In Michael Faber, Jochen Kohler, Kazuyoshi Nishijima (Eds.), Application of statistics and probability in civil engineering (pp. 692–696). London: CRC Press.
  • Straub, D., & Faber, M. H. (2004). On the relation between inspection quantity and quality. Journal of Nondestructive Testing, 9(7), 1–14.
  • Straub, D., & Faber, M. H. (2007). Temporal variability in corrosion modeling and reliability updating. Journal of Offshore Mechanics and Arctic Engineering, 129(4), 265–272. doi:10.1115/1.2355517
  • Straub, D., Malioka, V., & Faber, M. H. (2009). A framework for the asset integrity management of large deteriorating concrete structures. Structure and Infrastructure Engineering, 5(3), 199–213. doi:10.1080/15732470601017369
  • Sudret, B., & Der Kiureghian, A. (2000). Stochastic finite element methods and reliability: A State-of-the-art report. Berkeley: University of California Berkeley. Retrieved from https://www1.ethz.ch/ibk/su/publications/Reports/SFE-report-Sudret.pdf.
  • Sudret, B., Defaux, G., & Pendola, M. (2007). Stochastic evaluation of the damage length in RC beams submitted to corrosion of reinforcing steel. Civil Engineering and Environmental Systems, 24(2), 165–178. doi:10.1080/10286600601159305
  • Tao, J., & Chen, J. (2022, November). A hierarchy model for the uncertainty quantification of spatial variability in the constitutive parameters of concrete in structures. Structural Safety, 95, 102181. doi:10.1016/j.strusafe.2021.102181
  • Tran, T. V., Bastidas-Arteaga, E., Schoefs, F., Bonnet, S., O’Connor, A. J., & Lanata, F. (2012, July). Structural reliability analysis of deteriorating RC bridges considering spatial variability. In Bridge Maintenance, Safety, Management, Resilience and Sustainability - Proceedings of the 6th International Conference on Bridge Maintenance, Safety and Management (pp. 698–705). doi:10.1201/b12352-94
  • Uribe, F., Papaioannou, I., Betz, W., & Straub, D. (2020). Bayesian inference of random fields represented with the Karhunen–Loève expansion. Computer Methods in Applied Mechanics and Engineering, 358, 112632. doi:10.1016/j.cma.2019.112632
  • Van der Have, R. (2015, November). Random fields for non-linear finite element analysis of reinforced concrete, p. 244. Retrieved from http://repository.tudelft.nl/islandora/object/uuid:25780e9a-49c4-4085-9a65-af73119d97a7?collection=education.
  • Vanmarcke, E. (1983). Random fields. Cambridge, MA: MIT Press.
  • Vereecken, E., Botte, W., Lombaert, G., & Caspeele, R. (2021a). A Bayesian inference approach for the updating of spatially distributed corrosion model parameters based on heterogeneous measurement data. Structure and Infrastructure Engineering, 18(1), 30–46. doi:10.1080/15732479.2020.1833046
  • Vereecken, E., Botte, W., Lombaert, G., & Caspeele, R. (2021b). Influence of the correlation model on the failure probability of a reinforced concrete structure considering spatial variability. Structure and Infrastructure Engineering, 19(4), 510–524. doi:10.1080/15732479.2021.1953082
  • Vořechovský, M. (2008). Simulation of simply cross correlated random fields by series expansion methods. Structural Safety, 30(4), 337–363. doi:10.1016/j.strusafe.2007.05.002
  • Vu, K. A. T., & Stewart, M. G. (2005). Predicting the likelihood and extent of reinforced concrete corrosion-induced cracking. Journal of Structural Engineering, 131(11), 1681–1689. doi:10.1061/(ASCE)0733-9445(2005)131:11(1681)
  • Xu, T., & Li, J. (2018). Assessing the spatial variability of the concrete by the rebound hammer test and compression test of drilled cores. Construction and Building Materials, 188, 820–832. doi:10.1016/j.conbuildmat.2018.08.138
  • Ying, L., Vrouwenvelder, T., & Wijnants, G. H. (2003). Spatial variability of concrete degradation. In Life-Cycle Performance of Deteriorating Structures: Assessment, Design and Management; Third IABMAS Workshop on Life-Cycle Cost Analysis and Design of Civil Infrastructures Systems, pp. 49–58. Retrieved from papers2://publication/uuid/84A331C6-45C3-49E8-A030-CD9A196CD9CB
  • Zhou, H., Li, Y., Wen, Q., & Deodatis, G. (2023). Stochastic field model for the residual radius along the length of naturally and artificially corroded rebars. Structure and Infrastructure Engineering, 19(10), 1366–1377. doi:10.1080/15732479.2022.2027471

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.