Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Latest Articles
0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The thrust line in masonry arches: a new simplified algorithm

, &
Received 27 Sep 2023, Accepted 24 Jan 2024, Published online: 15 Jul 2024

References

  • Accornero, F., & Lacidogna, G. (2020). Safety assessment of masonry arch bridges considering the fracturing benefit. Applied Sciences, 10(10), 3490. doi:10.3390/app10103490
  • Accornero, F., Lacidogna, G., & Carpinteri, A. (2016). Evolutionary fracture analysis of masonry arches: Effects of shallowness ratio and size scale. Comptes Rendus. Mécanique, 344(9), 623–630. doi:10.1016/j.crme.2016.05.002
  • Alexakis, H., & Makris, N. (2014). Limit equilibrium analysis and the minimum thickness of circular masonry arches to withstand lateral inertial loading. Archive of Applied Mechanics, 84(5), 757–772. doi:10.1007/s00419-014-0831-4
  • Alexakis, H., & Makris, N. (2015). Limit equilibrium analysis of masonry arches. Archive of Applied Mechanics, 85(9–10), 1363–1381. doi:10.1007/s00419-014-0963-6
  • Barlow, W. H. (1846). On the existence (practically) of the line of equal horizontal thrust in arches, and the mode of determining it by geometrical construction. Minutes of the Proceedings of the Institution of Civil Engineers, 5(1846), 162–172. doi:10.1680/imotp.1846.24301
  • Block, P., Ciblac, T., & Ochsendorf, J. (2006). Real-time limit analysis of vaulted masonry buildings. Computers & Structures, 84(29–30), 1841–1852. doi:10.1016/j.compstruc.2006.08.002
  • Block, P., & Ochsenforf, J. (2007). Thrust network analysis: A new methodology for three-dimensional equilibrium. Journal of the International Association for Shell and Spatial Structures, 48(3), 167–173.
  • Brencich, A., & Gambarotta, L. (2005). Mechanical response of solid clay brickwork under eccentric loading. Part I: Unreinforced masonry. Materials and Structures, 38(2), 257–266. doi:10.1007/BF02479351
  • Cafarelli, R., Accornero, F., & Carpinteri, A. (2024). Snap-back analysis of fracture evolution in multi-cracked masonry arches. In S. Gabriele, A. Manuello Bertetto, F. Marmo, & A. Micheletti (Eds.), Shell and spatial structures. IWSS 2023. Lecture notes in civil engineering (vol. 437, pp. 80–87). Switzerland: Springer. doi:10.1007/978-3-031-44328-2_9
  • Casas, J. R. (2011). Reliability-based assessment of masonry arch bridges. Construction and Building Materials, 25(4), 1621–1631. doi:10.1016/j.conbuildmat.2010.10.011
  • Castigliano, C. A. P. (1879). Théorie de l’equilibre des systems élastiques et ses applications [The theory of equilibrium of elastic systems and its application]. Turin: A. F. Negro.
  • Cavalagli, N., Gusella, V., & Severini, L. (2016). Lateral loads carrying capacity and minimum thickness of circular and pointed masonry arches. International Journal of Mechanical Sciences, 115-116, 645–656. doi:10.1016/j.ijmecsci.2016.07.015
  • Cavalagli, N., Gusella, V., & Severini, L. (2017). The safety of masonry arches with uncertain geometry. Computers & Structures, 188, 17–31. doi:10.1016/j.compstruc.2017.04.003
  • Clemente, P. (1998). Introduction to dynamics of stone arches. Earthquake Engineering & Structural Dynamics, 27(5), 513–522. doi:10.1002/(SICI)1096-9845(199805)27:5<513::AID-EQE740>3.0.CO;2-O
  • Clemente, P., Occhiuzzi, A., & Raithel, A. (1995). Limit behaviour of stone arch bridges. Journal of Structural Engineering, 121(7), 1045–1050. doi:10.1061/(ASCE)0733-9445(1995)121:7(1045)
  • Cocchetti, G., Colasante, G., & Rizzi, E. (2011). On the analysis of minimum thickness in circular masonry arches. Applied Mechanics Reviews, 64(5), 050802. doi:10.1115/1.4007417
  • D’Ayala, D., & Casapulla, C. (2001). Limit state analysis of hemispherical domes with finite friction. Proceedings of III International Seminar on Structural Analysis of Historical Constructions (SAHC01) (pp. 617–626), Guimarães, Portugal.
  • de Felice, G., & De Santis, S. (2010). Experimental and numerical response of arch bridge historic masonry under eccentric loading. International Journal of Architectural Heritage, 4(2), 115–137. doi:10.1080/15583050903093886
  • De Lorenzis, I., DeJong, M., & Ochsendorf, J. (2007). Failure of masonry arches under impulse base motion. Earthquake Engineering & Structural Dynamics, 36(14), 2119–2136. doi:10.1002/eqe.719
  • DeJong, M., De Lorenzis, I., Adams, S., & Ochsendorf, J. (2008). Rocking stability of masonry arches in seismic regions. Earthquake Spectra, 24(4), 847–865. doi:10.1193/1.2985763
  • Dimitri, R., & Tornabene, F. (2015). A parametric investigation of the seismic capacity for masonry arches and portals of different shapes. Engineering Failure Analysis, 52, 1–34. doi:10.1016/j.engfailanal.2015.02.021
  • Ferris, M., & Tin-Loi, F. (2001). Limit analysis of frictional block assemblies as a mathematical program with complementarity constrains. International Journal of Mechanical Sciences, 43(1), 209–224. doi:10.1016/S0020-7403(99)00111-3
  • Foce, F. (2007). Milankovitch’s theorie der druckkurven: Good mechanics for masonry architecture. Nexus Network Journal, 9(2), 185–210. doi:10.1007/s00004-007-0039-9
  • Franciosi, C. (1986). Limit behaviour of masonry arches in the presence of finite displacements. International Journal Mechanical Sciences, 28(7), 463–471. doi:10.1016/0020-7403(86)90066-4
  • Galassi, S. (2023). An alternative approach for limit analysis of masonry arches on moving supports in finite small displacements. Engineering Failure Analysis, 145, 107004. doi:10.1016/j.engfailanal.2022.107004
  • Galassi, S., Misseri, G., & Rovero, L. (2021). Capacity assessment of masonry arches on moving supports in large displacements: Numerical model and experimental validation. Engineering Failure Analysis, 129, 105700. doi:10.1016/j.engfailanal.2021.105700
  • Galassi, S., & Tempesta, G. (2019). The Matlab code of the method based on the full range factor for assessing the safety of masonry arches. MethodsX, 6, 1521–1542. doi:10.1016/j.mex.2019.05.033
  • Gilbert, M. (2007). Limit analysis applied to masonry arch bridges: State-of-art and recent developments. 5th ARCH International Conference on Arch Bridges, Madeira, Portugal.
  • Gilbert, M., Casapulla, C., & Ahmed, H. M. (2006). Limit analysis of masonry block structures with non-associative frictional joints using linear programming. Computers & Structures, 84(13–14), 873–887. doi:10.1016/j.compstruc.2006.02.005
  • Heyman, J. (1982). The masonry arch. Chichester, UK: Ellis Horwood Ltd.
  • Heyman, J. (1995). The stone skeleton: Structural engineering of masonry architecture. Cambridge, UK: Cambridge University Press.
  • Hooke, R. (1676). A description of helioscopes, and some other instruments. London, UK: T. R. for John Martin Printer to the Royal Society.
  • Huerta, F. S. (2001). Mechanics of masonry vaults: The equilibrium approach. In P. B. Lourenço & P. Roca (Eds.), Proceedings of the 3rd International Seminar of Historical Constructions: Possibilities of Numerical and Experimental Techniques (pp. 47–69). Guimarães, Portugal: Universidade do Minho.
  • Inglis, C. E. (1951). Applied mechanics for engineers. Cambridge, UK: Cambridge University Press.
  • Lacidogna, G., & Accornero, F. (2018). Elastic, plastic, fracture analysis of masonry arches: A multi-span bridge case study. Curved and Layered Structures, 5(1), 1–9. doi:10.1515/cls-2018-0001
  • Livesley, R. (1978). Limit analysis of structures formed from rigid blocks. International Journal for Numerical Methods in Engineering, 12(12), 1853–1871. doi:10.1002/nme.1620121207
  • Marmo, F., & Rosati, L. (2017). Reformulation and extension of the thrust network analysis. Computers & Structures, 182, 104–118. doi:10.1016/j.compstruc.2016.11.016
  • Marmo, F., Masi, D., & Rosati, L. (2018). Thrust network analysis of masonry helical staircases. International Journal of Architectural Heritage, 12(5), 828–848. doi:10.1080/15583058.2017.1419313
  • Marmo, F., Masi, D., Sessa, S., Toraldo, F., & Rosati, L. (2017). Thrust network analysis of masonry vaults subject to vertical and horizontal loads. In M. Papadrakakis & M. Fragiadakis (Eds.), COMPDYN 2017. Proceedings of 6th ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering (vol. 1, pp. 2227–2238).
  • Moreira, V. N., Fernandes, J., Matos, J. C., & Oliveira, D. V. (2016). Reliability-based assessment of existing masonry arch railway bridges. Construction and Building Materials, 115, 544–554. doi:10.1016/j.conbuildmat.2016.04.030
  • O’Dwyer, D. (1999). Funicular analysis of masonry vaults. Computers & Structures, 73(1–5), 187–197. doi:10.1016/S0045-7949(98)00279-X
  • Oppenheim, I. (1992). The masonry arch as a four-link mechanism under base motion. Earthquake Engineering & Structural Dynamics, 21(11), 1005–1017. doi:10.1002/eqe.4290211105
  • Sinopoli, A., Corradi, M., & Foce, F. (1997). Modern formulation for preelastic theories on masonry arches. Journal of Engineering Mechanics, 123(3), 204–213. doi:10.1061/(ASCE)0733-9399(1997)123:3(204)
  • Strand7 v2.4. (2010). Strand7 finite element system release 2.4. Sydney, NSW: Strand 7 Pty Ltd.
  • Tempesta, G., & Galassi, S. (2019). Safety evaluation of masonry arches. A numerical procedure based on the thrust line closest to the geometrical axis. International Journal of Mechanical Sciences, 155, 206–221. doi:10.1016/j.ijmecsci.2019.02.036

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.