Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Latest Articles
0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Flood vulnerability of inland bridges with foundation scour

& ORCID Icon
Received 28 Sep 2023, Accepted 29 Apr 2024, Published online: 06 Aug 2024

References

  • AASHTO. (1998). Bridge design specifications. Washington, DC: American Association of State Highway Association.
  • AASHTO. (2012). Bridge design specifications. Washington, DC: American Association of State Highway Association.
  • Adhikary, B. D., Majumdar, P., & Kostic, M. (2009). CFD simulation of open channel flooding flows and scouring around bridge structures [Paper presentation]. Proceedings of the 6th WSEAS International Conference on Fluid Mechanics (pp. 106–113).
  • Ahamed, T., Duan, J. G., & Jo, H. (2020). Flood-fragility analysis of instream bridges–consideration of flow hydraulics, geotechnical uncertainties, and variable scour depth. Structure and Infrastructure Engineering, 17(11), 1494–1507. doi:10.1080/15732479.2020.1815226
  • Ahamed, T., Shim, J., Jo, H., & Duan, J. G. (2018). Flood fragility analysis of instream bridges. Proc of SPIE, 10598, 79. doi:10.1117/12.2296782
  • Ahmadi, S. M., & Ahmadi, M. T. (2023). Hydrodynamic consideration for improving the design/evaluation of over-topped bridge decks during extreme floods. Structure and Infrastructure Engineering, 1–15. doi:10.1080/15732479.2023.2171069
  • Aly, A. M., & Dougherty, E. (2021). Bridge pier geometry effects on local scour potential: A comparative study. Ocean Engineering, 234, 109326. doi:10.1016/j.oceaneng.2021.109326
  • Anisha, A., Jacob, A., Davis, R., & Mangalathu, S. (2022). Fragility functions for highway RC bridge under various flood scenarios. Engineering Structures, 260, 114244. doi:10.1016/j.engstruct.2022.114244
  • API. (2000). Recommended practice for planning, designing and construction fixed offshore platforms-working stress design. Washington, DC: American Petroleum Institute.
  • Arneson, L. A., Zevenbergen, L. W., Lagasse, P. F., & Clopper, P. E. (2001). Evaluating scour at bridges (Report No. FHWA-HIF-12-003). Federal Highway Administration.
  • Arora, R. K., & Banerjee, S. (2023). Reliability-based approach for fragility assessment of bridges under floods. Structural Engineering and Mechanics, 88(4), 311–322. doi:10.12989/sem.2023.88.4.311
  • AS5100.2. (2017). Bridge design, part 2: Design loads. Sydney: SAI Global Limited.
  • Banerjee, S., & Shinozuka, M. (2008). Experimental verification of bridge seismic damage states quantified by calibrating analytical models with empirical field data. Earthquake Engineering and Engineering Vibration, 7(4), 383–393. doi:10.1007/s11803-008-1010-9
  • Bushra, A. (2010). Computational fluid dynamics of hydrodynamic forces on inundated bridge decks and the effect of scaling [Doctoral dissertation]. University of Nebraska.
  • CD356. (2020). Design of highway structures for hydraulic action. Guildford: Highway England.
  • Cook, W., Barr, P. J., & Halling, M. W. (2015). Bridge failure rate. Journal of Performance of Constructed Facilities, 29(3), 1–8. doi:10.1061/(ASCE)CF.1943-5509.0000571
  • CSA S6-14. (2017). Canadian Highway Bridge Design Code. Ontario, Canada: CSA Group.
  • Dean, M. T. (2020). Laboratory study of hydrodynamics of submerged bridges [MSc thesis]. University of Texas.
  • Deepu, S. P., Prajapat, K., & Ray-Chaudhuri, S. (2014). Seismic vulnerability of skew bridges under bi-directional ground motions. Engineering Structures, 71, 150–160. doi:10.1016/j.engstruct.2014.04.013
  • Devendiran, D. K., & Banerjee, S. (2023a). Contribution of vertical ground motion on seismic response of multi-span simply-supported T-girder RC bridges in the presence of corrosion-fatigue degradation. Engineering Structures, 294, 116720. doi:10.1016/j.engstruct.2023.116720
  • Devendiran, D. K., & Banerjee, S. (2023b). Influence of combined corrosion–fatigue deterioration on life-cycle resilience of RC bridges. Journal of Bridge Engineering, 28(5), 04023014. doi:10.1061/JBENF2.BEENG-5708
  • Devendiran, D. K., Banerjee, S., & Mondal, A. (2020). Impact of climate change on multihazard performance of river-crossing bridges: Risk, resilience, and adaptation. Journal of Performance of Constructed Facilities, 35(1), 04020127. doi:10.1061/(ASCE)
  • EN 1991-1-6. (2005). Eurocode 1-Actions on structures - Part 1-6: General actions - Actions during execution. Brussels: European Committee for Standardization.
  • Garg, R. K., Chandra, S., & Kumar, A. (2022). Analysis of bridge failures in India from 1977 to 2017. Structure and Infrastructure Engineering, 18(3), 295–312. doi:10.1080/15732479.2020.1832539
  • Greco, F., & Lonetti, P. (2022). Vulnerability analysis of structural systems under extreme flood events. Journal of Marine Science and Engineering, 10(8), 1121. doi:10.3390/jmse10081121
  • Huang, B., Liao, L., Ren, Q., Cui, X., Zhang, J., & Zhu, B. (2022). Fragility analysis of the box-girder coastal bridge with different connections subjected to extreme random waves. Ocean Engineering, 245, 110580. doi:10.1016/j.oceaneng.2022.110580
  • IRC: 6. (2016). Standard specifications and code of practice for road bridges, section: II Loads and Load Combinations. New Delhi: Indian Road Congress.
  • Istrati, D., & Hasanpour, A. (2022, July 5–7). Numerical investigation of bam break-induced extreme flooding of bridge superstructures [Paper presentation]. 3rd International Conference on Natural Hazards and Infrastructures, Athens, Greece.
  • JRA. (2019). Specifications for highway bridges. Tokyo: Japan Road Association.
  • Kabir, S. M. I., Ahmari, H., & Dean, M. (2022). Experimental study to investigate the effects of bridge geometry and flow condition on hydrodynamic forces. Journal of Fluids and Structures, 113, 103688. doi:10.1016/j.jfluidstructs.2022.103688
  • Kerenyi, K., Sofu, T., & Guo, J. (2009). Hydrodynamic forces on inundated bridge decks (Report No. FHWA-HRT-09-028). Federal Highway Administration.
  • Khandel, O., & Soliman, M. (2019). Integrated framework for quantifying the effect of climate change on the risk of bridge failure due to floods and flood-induced scour. Journal of Bridge Engineering, 24(9), 04019090. doi:10.1061/(asce)be.1943-5592.0001473
  • Kim, H., Sim, S. H., Lee, J., Lee, Y. J., & Kim, J. M. (2017). Flood fragility analysis for bridges with multiple failure modes. Advances in Mechanical Engineering, 9(3), 168781401769641. doi:10.1177/1687814017696415
  • Lee, J., Lee, Y. J., Kim, H., Sim, S. H., & Kim, J. M. (2016). A new methodology development for flood fragility curve derivation considering structural deterioration for bridges. Smart Structures and Systems, 17(1), 149–165. doi:10.12989/sss.2016.17.1.149
  • Lee, J., Lee, Y. J., Kim, H., & Sim, S. H. (2016, September 28–August 1) Flood fragility analysis for multiple failure modes of bridges by finite element reliability analysis [Paper presentation]. The 2016 Structures Congress (Structure 16), Jeju Island, Korea.
  • Lin, C., Han, J., Bennett, C., & Parsons, R. L. (2014). Case history analysis of bridge failures due to scour [Paper presentation]. Climatic Effects on Pavement and Geotechnical Infrastructure (pp. 204–216). doi:10.1061/9780784413326.021
  • Loli, M., Mitoulis, S. A., Tsatsis, A., Manousakis, J., Kourkoulis, R., & Zekkos, D. (2022). Flood characterization based on forensic analysis of bridge collapse using UAV reconnaissance and CFD simulations. The Science of the Total Environment, 822, 153661. doi:10.1016/j.scitotenv.2022.153661
  • Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804–1826. doi:10.1061/(ASCE)0733-9445(1988)114:8(1804)
  • Miner, N., & Alipour, A. (2022). Bridge damage, repair costs, and fragilities for inland flood events. Journal of Bridge Engineering, 27(8), 04022057. doi:10.1061/(asce)be.1943-5592.0001865
  • Mondoro, A., & Frangopol, D. M. (2018). Risk-based cost-benefit analysis for the retrofit of bridges exposed to extreme hydrologic events considering multiple failure modes. Engineering Structures, 159, 310–319. doi:10.1016/j.engstruct.2017.12.029
  • Naderi, N. (2018). Numerical simulation of hydrodynamic forces on bridge decks [MSc thesis]. Delft University of Technology.
  • Nasim, M., Setunge, S., Zhou, S., & Mohseni, H. (2019). An investigation of water-flow pressure distribution on bridge piers under flood loading. Structure and Infrastructure Engineering, 15(2), 219–229. doi:10.1080/15732479.2018.1545792
  • Nielson, B. G. (2005). Analytical fragility curves for highway bridges in moderate seismic zones [Doctoral dissertation]. Georgia Institute of Technology.
  • Panton, R. L. (2013). Incompressible flow (4th ed.). Hoboken, NJ: Wiley.
  • Pregnolato, M., Winter, A. O., Mascarenas, D., Sen, A. D., Bates, P., & Motley, M. R. (2022). Assessing flooding impact to riverine bridges: An integrated analysis. Natural Hazards and Earth System Sciences, 22(5), 1559–1576. doi:10.5194/nhess-22-1559-2022
  • Simiu, E., & Yeo, D. (2019). Wind effects on structures (4th ed.). Hoboken, NJ: Wiley Blackwell.
  • Song, H.-W., You, D.-W., Byun, K.-J., & Maekawa, K. (2002). Finite element failure analysis of reinforced concrete T-girder bridges. Engineering Structures, 24(2), 151–162. doi:10.1016/S0141-0296(01)00107-9
  • Tennekes, H., & Lumley, J. L. (1999). A first course in turbulence. Cambridge, MA: The MIT Press.
  • Tubaldi, E., White, C. J., Patelli, E., Mitoulis, S. A., de Almeida, G., Brown, J., Cranston, M., Hardman, M., Koursari, E., Lamb, R., McDonald, H., Mathews, R., Newell, R., Pizarro, A., Roca, M., & Zonta, D. (2022). Invited perspectives: Challenges and future directions in improving bridge flood resilience. Natural Hazards and Earth System Sciences, 22(3), 795–812. doi:10.5194/nhess-22-795-2022
  • Wang, X., Shafieezadeh, A., & Ye, A. (2019). Optimal EDPs for post-earthquake damage assessment of extended pile-shaft–supported bridges subjected to transverse spreading. Earthquake Spectra, 35(3), 1367–1396. doi:10.1193/090417EQS171M
  • Wardhana, K., & Hadipriono, F. C. (2003). Analysis of recent bridge failures in the United States. Journal of Performance of Constructed Facilities, 17(3), 144–150. doi:10.1061/(ASCE)0887-3828(2003)17:3(144)
  • Wilcox, D. C. (2006). Turbulence modeling for CFD. Canada: DCW Industries.
  • Xiong, W., Cai, C. S., Zhang, R., Shi, H., & Xu, C. (2023). Review of hydraulic bridge failures: Historical statistic analysis, failure modes, and prediction methods. Journal of Bridge Engineering, 28(4), 1–24. doi:10.1061/JBENF2.BEENG-5763
  • Yang, Z., Huang, B., Zhu, B., Zhang, J., & Kang, A. (2021). Comparative study of Tsunami-like wave-induced forces on medium-scale models of box girder and T-girder bridges. Journal of Bridge Engineering, 26(2), 04020125. doi:10.1061/(asce)be.1943-5592.0001671
  • Yilmaz, T., Banerjee, S., & Johnson, P. A. (2016). Performance of two real-life California Bridges under regional natural hazards. Journal of Bridge Engineering, 21(3), 04015063. doi:10.1061/(asce)be.1943-5592.0000827
  • Zhu, D., Yuan, P., & Dong, Y. (2021). Probabilistic performance of coastal bridges under hurricane waves using experimental and 3D numerical investigations. Engineering Structures, 242, 112493. doi:10.1016/j.engstruct.2021.112493

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.