2,991
Views
22
CrossRef citations to date
0
Altmetric
Article

What the collapse of the ensemble Kalman filter tells us about particle filters

, &
Article: 1283809 | Received 31 May 2016, Accepted 19 Dec 2016, Published online: 08 Mar 2017

References

  • Agapiou, S., Papaspiliopoulos, O., Sanz-Alonso, D. and Stuart, A. (2016). Importance sampling: Computational complexity and intrinsic dimension. submitted, pre-print available on https://arxiv.org.
  • Anderson, J. (2001). An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 129, 2884–2903.
  • Arulampalam, M., Maskell, S., Gordon, N. and Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188.
  • Bengtsson, T., Bickel, P. and Li, B. (2008). Curse of dimensionality revisited: the collapse of importance sampling in very large scale systems., IMS Collections: Probability and Statistics: Essays in Honor of David A. Freedman 2, 316–334.
  • Bengtsson, T., Snyder, C. and Nychka, D. (2003). Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res. 108, 8775.
  • Beskos, A., Crisan, D. and Jasra, A. (2014). On the stability of sequential Monte Carlo methods in high dimensions. Ann. Appl. Probab. 24(4), 1396–1445.
  • Bickel, P., Li, B. and Bengtsson, T. (2008). Sharp failure rates for the bootstrap particle filter in high dimensions., Pushing Limits Contemp. Stat.: Contrib. Honor Jayanta K. Ghosh 3, 318–329.
  • Bishop, C., Etherton, B. and Majumdar, S. (2001). Adaptive sampling with the ensemble transform Kalman filter. part I: Theoretical aspects. Monthly Weather Review 129, 420–436.
  • Bocquet, M., Pires, C. and Wu, L. (2010). Beyond Gaussian statistical modeling in geophysical data assimilation. Mon. Weather Rev. 138, 2997–3023.
  • Burgers, G., van Leeuwen, P. J. and Evensen, G. (1998). Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev. 126, 1719–1724.
  • Chopin, N. (2004). Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Statistics 32(6), 2385–2411.
  • Chorin, A. and Hald, O. (2013). Stochastic Tools in Mathematics and Science, 3rd ed., Springer, New York.
  • Chorin, A., Lu, F., Miller, R., Morzfeld, M. and Tu, X. (2016). Sampling, feasibility, and priors in Bayesian estimation, Discrete Continuous Dyn. Syst. 36, 4227–4246.
  • Chorin, A. and Morzfeld, M. (2013). Conditions for successful data assimilation. J. Geophys. Res. – Atmos. 118, 11522–11533.
  • Chorin, A., Morzfeld, M. and Tu, X. (2010). Implicit particle filters for data assimilation. Commun. Appl. Math. Comput. Sci. 5(2), 221–240.
  • Chorin, A. and Tu, X. (2009). Implicit sampling for particle filters. Proc. Nat. Acad. Sci. 106(41), 17249–17254.
  • Doucet, A. (1998). On sequential Monte Carlo methods for Bayesian filtering. Technical Report. Cambridge: Department of Engineering, University Cambridge.
  • Doucet, A., de Freitas, N. and Gordon, N. (eds.) (2001). Sequential Monte Carlo Methods in Practice. Springer, New York.
  • Doucet, A., Godsill, S. and Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208.
  • Evensen, G. (2006). Data Assimilation: The Ensemble Kalman Filter. Springer, New York.
  • Fournier, A., Hulot, G., Jault, D., Kuang, W., Tangborn, W., co-authors. (2010). An introduction to data assimilation and predictability in geomagnetism, Space Sci. Rev. 155, 247–291.
  • Gaspari, G. and Cohn, S. (1999). Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125, 723–757.
  • Gordon, N., Salmond, D. and Smith, A. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc. Radar Signal Process. 140(2), 107–113.
  • Hamill, T. M., Whitaker, J. and Snyder, C. (2001). Distance-dependent filtering of background covariance estimates in an ensemble Kalman filter. Mon. Weather Rev. 129, 2776–2790.
  • Hodyss, D. (2011). Ensemble state estimation for nonlinear systems using polynomial expansions in the innovation. Mon. Weather Rev. 139, 3571–3588.
  • Hodyss, D. and Campbell, W. (2013). Square root and perturbed observation ensemble generation techniques in Kalman and quadratic ensemble filtering algorithms. Mon. Weather Rev. 141, 2561–2573.
  • Houtekamer, P. and Mitchell, H. (2001). A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129, 123–136.
  • Houtekamer, P. L., Mitchell, H. L., Pellerin, G., Buehner, M., Charron, M., co-authors. (2005). Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Weather Rev. 133, 604–620.
  • Kalman, R. (1960). A new approach to linear filtering and prediction theory. Trans. ASME-J. Basic Eng. 82(Series D), 35–48.
  • Kalman, R. and Bucy, R. (1961). New results in linear filtering and prediction theory. ASME J. Basic Eng. Ser. D 83, 95–108.
  • Kalos, M. and Whitlock, P. (1986). Monte Carlo Methods,, 1st ed., Vol. 1. John Wiley & Sons, New York.
  • Kantas, N., Beskos, A. and Jasra, A. (2014). Sequential Monte Carlo methods for high-dimensional inverse problems: A case study for the Navier-Stokes equations, SIAM/ASA. J. Uncertainty Quantification 2, 464–489.
  • Kelly, D., Law, K. and Stuart, A. (2014). Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time. Nonlinearity 27, 2579–2603.
  • Kelly, D., Majda, A. and Tong, X. (2016a). Concrete ensemble Kalman filters with rigorous catastrophic filter divergence. Proc. Nat. Acad. Sci. 112(34), 10589–10594.
  • Kelly, D., Majda, A. and Tong, X. (2016b). Nonlinear stability of the ensemble Kalman filter with adaptive covariance inflation. Commun. Math. Sci.
  • Kelly, D., Majda, A. and Tong, X. (2016c). Nonlinear stability and ergodicity of ensemble based kalman filters. Nonlinearity 29(2), 657–691.
  • Khlalil, M., Sarkar, A., Adhikari, S. and Poirel, D. (2015). The estimation of time-invariant parameters of noisy nonlinear oscillatory systems. J. Sound Vib. 344, 81–100.
  • Klaas, M., de Freitas, N. and Doucet, A. (2005). Towards practical N2 Monte Carlo: The marginal particle filter, Proceedings of the 21st Annual Conference on Uncertainty in Artificial Intelligence (UAI-05), Arlington, VA. pp. 308–315.
  • Künsch, H. (2005). Recursive Monte Carlo filters: Algorithms and theoretical analysis. Ann. Statistics 33(5), 1983–2021.
  • Lei, J. and Bickel, P. (2011). A moment matching ensemble filter for nonlinear non-Gaussian data assimilation. Mon. Weather Rev. 139, 3964–3973.
  • Liu, J. and Chen, R. (1995). Blind deconvolution via sequential imputations. J. Am. Stat. Assoc. 90(430), 567–576.
  • Majda, A. \ & Tong, X. (2016). Robustness and accuracy of finite ensemble Kalman filters in large dimensions. arXiv, p. 1606.09321.
  • Moral, P. D. (2004). Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer, New York.
  • Morzfeld, M. and Chorin, A. (2012). Implicit particle filtering for models with partial noise, and an application to geomagnetic data assimilation, Nonlinear Process. Geophys. 19, 365–382.
  • Morzfeld, M., Tu, X., Atkins, E. and Chorin, A. (2012). A random map implementation of implicit filters. J. Comput. Phys. 231, 2049–2066.
  • Owen, A. B. (2013). Monte Carlo Theory, Methods and Examples. Online at: http://statweb.stanford.edu/~owen/mc/
  • Papadakis, N., Memin, E., Cuzol, A. and Gengembre, N. (2010). Data assimilation with the weighted ensemble Kalman filter. Tellus 62A, 673–697.
  • Penny, S. and Miyoshi, T. (2015). A local particle filter for high dimensional geophysical systems, Nonlinear Process. Geophys. 2, 1631–1658.
  • Poterjoy, J. (2015). A localized particle filter for high-dimensional nonlinear systems. Mon. Weather Rev. 144, 59–76.
  • Poterjoy, J. and Anderson, J. (2016). Efficient assimilation of simulated observations in a high-dimensional geophysical system using a localized particle filter. Mon. Weather Rev. 144, 2007–2020.
  • Raeder, K., Anderson, J. L., Collins, N., Hoar, T. J., Kay, J. E. and co-authors. (2012). DART/CAM: An ensemble data assimilation system for CESM atmospheric models. J. Clim. 25, 6304–6317.
  • Rebeschini, P. and van Handel, R. (2015). Can local particle filters beat the curse of dimensionality? Ann. Appl. Probab. 25(5), 2809–2866.
  • Reich, S. (2013). A nonparametric ensemble transform method for Bayesian inference. Mon. Weather Rev. 35(4), 1337–1367.
  • Snyder, C. (2011). Particle filters, the "optimal" proposal and high-dimensional systems. Proceedings of the ECMWF Seminar on Data Assimilation for Atmosphere and Ocean, Reading, UK, 1–10.
  • Snyder, C., Bengtsson, T., Bickel, P. and Anderson, J. (2008). Obstacles to high-dimensional particle filtering. Mon. Weather Rev. 136(12), 4629–4640.
  • Snyder, C., Bengtsson, T. and Morzfeld, M. (2015). Performance bounds for particle filters using the optimal proposal. Mon: Weather Rev. 143(11), 4750–4761.
  • Tippet, M., Anderson, J., Bishop, C., Hamill, T. and Whitaker, J. (2003). Ensemble square root filters. Mon. Weather Rev. 131, 1485–1490.
  • Tödter, J. and Ahrens, B. (2015). A second-order exact ensemble square root filter for nonlinear data assimilation. Mon. Weather Rev. 143, 1337–1367.
  • van Leeuwen, P. (2009). Particle filtering in geophysical systems. Mon. Weather Rev. 137, 4089–4144.
  • van Leeuwen, P., Cheng, Y. and Reich, S. (2015). Nonlinear Data Assimilation. Springer.
  • Vanden-Eijnden, E. and Weare, J. (2012). Data assimilation in the low noise regime with application to the Kuroshio. Mon. Weather Rev. 141, 1822–1841.
  • Wang, X., Hamill, T. M., Whitaker, J. S. and Bishop, C. H. (2007). A comparison of hybrid ensemble transform Kalman filter-optimum interpolation and ensemble square root filter analysis schemes. Mon. Weather Rev. 135, 1055–1076.
  • Weare, J. (2009). Particle filtering with path sampling and an application to a bimodal ocean current model. J. Comput. Phys. 228, 4312–4331.
  • Zaritskii, V. and Shimelevich, L. (1975). Monte Carlo technique in problems of optimal data processing. Autom Remote Control 12, 95–103.