1,016
Views
3
CrossRef citations to date
0
Altmetric
Articles

Asymmetric response of the Atlantic Meridional Ocean Circulation to freshwater anomalies in a strongly-eddying global ocean model

&
Article: 1299283 | Received 22 Dec 2016, Accepted 23 Jan 2017, Published online: 03 Apr 2017

References

  • Andersson, A., Fennig, K., Klepp, C., Bakan, S., Graßl, H. and co-authors. 2010. The Hamburg Ocean atmosphere parameters and fluxes from satellite data -- HOAPS-3. Earth Syst. Sci. Data Discuss. 3(1), 143–194.
  • Behrens, E., Biastoch, A. and Böning, C. W. 2013. Spurious AMOC trends in global ocean sea-ice models related to subarctic freshwater forcing. Ocean Model. 69(C), 39–49.
  • Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K. and Bamber, J. L. 2016. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nature Geosci. 9(7), 523–527.
  • Brunnabend, S.-E., Dijkstra, H. A., Kliphuis, M. A., van Werkhoven, B., Bal, H. E. and co-authors. 2014. Changes in extreme regional sea surface height due to an abrupt weakening of the Atlantic meridional overturning circulation. Ocean Sci. 10, 881–891. DOI: 10.5194/os-10-881-2014.
  • Buckley, M. W. and Marshall, J. 2016. Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review. Rev. Geophys. 54(1), 5–63.
  • Den Toom, M., Dijkstra, H. A., Weijer, W., Hecht, M. W. and Maltrud, M. E. 2014. Sensitivity of a strongly eddying global ocean to North Atlantic Freshwater Perturbations. J. Phys. Oceanogr. 44, 464–481.
  • Drijfhout, S., Bathiany, S., Beaulieu, C., Brovkin, V., Claussen, M. and co-authors. 2015. Catalogue of abrupt shifts in intergovernmental panel on climate change climate models. Proc. Natl. Acad. Sci. 112(43), E5777–E5786.
  • Dukowicz, J. K. and Smith, R. D. 1994. Implicit free-surface method for the Bryan--Cox--Semtner ocean model. J. Geophys. Res. 99(C4), 7991–8014.
  • Gerdes, R., Hurlin, W. and Griffies, S. M. 2006. Sensitivity of a global ocean model to increased run-off from Greenland. Ocean Model. 12, DOI: 10.1016/j.ocemod.2005.08.003.
  • Huisman, S. E., den Toom, M., Dijkstra, H. A. and Drijfhout, S. 2010. An indicator of the multiple equilibria regime of the Atlantic meridional overturning circulation. J. Phys. Oceanogr. 40(3), 551–567.
  • Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M. and Rosinski, J. 2008. A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J. Clim. 21(19), 5145–5153.
  • IPCC, 2013. Climate change 2013: The Physical Science Basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (ed. T. F. Stocker, et al. Cambridge University Press, Cambridge.
  • Johns, W. E., Baringer, M. O. and Beal, L. M. 2011. Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5 N. J. Clim. 24, 2429–2449.
  • Kopp, R. E., Mitrovica, J. X., Griffies, S. M., Yin, J., Hay, C. C. and co-authors. 2010. The impact of Greenland melt on local sea levels: A partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Clim. Change 103, 619–625. DOI: 10.1007/s10584-010-9935-1.
  • Large, W. G. and Yeager, S. 2004. Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. Technical Report, National Center for Atmospheric Research, Boulder, CO, USA.
  • Maltrud, M., Bryan, F. and Peacock, S. 2010. Boundary impulse response functions in a century-long eddying global ocean simulation. Environ. Fluid Mech. 10(1–2), 275–295.
  • Marsh, R., Desbruyeres, D., Bamber, J. L., de Cuevas, B. A., Coward, A. C. and co-authors. 2010. Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model. Ocean Sci. 6(3), 749–760.
  • Marsh, R., Nurser, A., Megann, A. and New, A. 2000. Water mass transformation in the Southern Ocean of a global isopycnal coordinate GCM. J. Phys. Oceanogr. 30(5), 1013–1045.
  • Murray, R. J. 1996. Explicit generation of orthogonal grids for ocean models. J. Comput. Phys. 126, 251–273.
  • Nikurashin, M. and Vallis, G. 2011. A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr. 41(3), 485–502.
  • Spall, M. 1996. Dynamics of the gulf stream-deep western boundary current crossover. Part I: Entrainment and recirculation. J. Phys. Oceanogr. 26, 2152–2168.
  • Spall, M. and Pickart, R. S. 2001. Where does dense water sink? A subpolar gyre example. J. Phys. Oceanogr. 31, 810–826.
  • Stammer, D. 2008. Response of the global ocean to Greenland and Antarctic ice melting. J. Geophys. Res. 113. C06022. DOI: 10.1029/2006JC004079.
  • Stammer, D., Agarwal, N., Herrmann, P., Köhl, A. and Mechoso, C. R. 2011. Response of a coupled ocean-atmosphere model to Greenland ice melting. Surv. Geophys. 32, 621–642. DOI: 10.1007/s10712-011-9142-2.
  • Stommel, H. 1961. Thermohaline convection with two stable regimes of flow. Tellus 13, 244–230.
  • Toggweiler, J. R. and Samuels, B. 1995. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. 42, 477–500.
  • van Werkhoven, B., Maassen, J., Kliphuis, M., Dijkstra, H., Brunnabend, S. and co-authors. 2014. A distributed computing approach to improve the performance of the parallel ocean program (v2. 1). Geosci. Model Dev. 7(1), 267–281.
  • Walin, G. 1982. On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus 34(2), 187–195.
  • Weijer, W., Maltrud, M. E., Hecht, M. W., Dijkstra, H. A. and Kliphuis, M. A. 2012. Response of the Atlantic Ocean circulation to Greenland Ice Sheet melting in a strongly-eddying ocean model. Geophys. Res. Lett. 39(9), L09606-1–L09609-6.
  • Wolfe, C. L. and Cessi, P. 2009. Overturning circulation in an Eddy--Resolving model: The effect of the pole-to-pole temperature gradient. J. Phys. Oceanogr. 39(1), 125–142.
  • Wolfe, C. L. and Cessi, P. 2011. The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr. 41(9), 1795–1810.
  • Wolfe, C. L. and Cessi, P. 2014. Salt feedback in the adiabatic overturning circulation. J. Phys. Oceanogr. 44(4), 1175–1194.