1,388
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Dynamics of an idealized fluid model for investigating convective-scale data assimilation

, &
Article: 1369332 | Received 22 Feb 2017, Accepted 29 Jul 2017, Published online: 08 Sep 2017

References

  • Arakawa, A. 1997. Adjustment mechanisms in atmospheric models. J. Meteorol. Soc. Japan 75(1B), 155–179.
  • Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R. and Perthame, B. 2004. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065.
  • Baines, P. G. 1998. Topographic Effects in Stratified Flows. Cambridge University Press, Cambridge.
  • Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M. and co-authors. 2011. Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon. Weather Rev. 139(12), 3887–3905.
  • Bannister, R. 2010. The role of balance in data assimilation. In: Progress in Industrial Mathematics at ECMI 2008, Mathematics in Industry (eds. A.D. Fitt, J. Norbury, H. Ockendon and E. Wilson). Springer, Berlin Heidelberg, pp. 393–399.
  • Blumen, W. 1972. Geostrophic adjustment. Rev. Geophys. Space Phys. 10, 485–528.
  • Bouchut, F., Lambaerts, J., Lapeyre, G. and Zeitlin, V. 2009. Fronts and nonlinear waves in a simplified shallow-water model of the atmosphere with moisture and convection. Phys. Fluids 21(11), 116–604.
  • Bouchut, F., Le Sommer, J. and Zeitlin, V. 2004. Frontal geostrophic adjustment and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 2: high-resolution numerical simulations. J. Fluid Mech. 514, 35–63.
  • Bouchut, F. 2007. Efficient numerical finite volume schemes for shallow water models. In: Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances (ed. V. Zeitlin). Elsevier, Amsterdam, chap. 5.
  • Bowler, N. E., Flowerdew, J. and Pring, S. R. 2013. Tests of different flavours of EnKF on a simple model. Q. J. R. Meteorol. Soc. 139(675), 1505–1519.
  • Cullen, M. J. 2006. A Mathematical Theory of Large-scale Atmosphere/Ocean Flow. Imperial College Press, London.
  • Dal Maso, G., Le floch, P. G. and Murat, F. 1995. Definition and weak stability of nonconservative products. J. Math. Pures Appliquées 74(6), 483–548.
  • Done, J., Davis, C. A. and Weisman, M. 2004. The next generation of NWP: explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett. 5(6), 110–117.
  • Dow, G. and Macpherson, B. 2013. Benefit of Convective-scale Data Assimilation and Observing Systems in the UK Models. Forecasting Research Technical Report 585 Met Office, UK. Available online at http://www.metoffice.gov.uk/media/pdf/t/l/FRTR585.pdf
  • Ehrendorfer, M. 2007. A review of issues in ensemble-based Kalman filtering. Meteorol. Z. 16(6), 795–818.
  • Fairbairn, D., Pring, S., Lorenc, A. and Roulstone, I. 2014. A comparison of 4DVar with ensemble data assimilation methods. Q. J. R. Meteorol. Soc. 140(678), 281–294.
  • Frierson, D. M., Majda, A. J., Pauluis, O. M. and co-authors. 2004. Large scale dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit. Commun. Math. Sci. 2(4), 591–626.
  • Gill, A. 1982. Studies of moisture effects in simple atmospheric models: the stable case. Geophys. Astrophys. Fluid Dyn. 19(1–2),119–152.
  • Harlim, J. and Majda, A. J. 2013. Test models for filtering and prediction of moisture-coupled tropical waves. Q. J. R. Meteorol. Soc. 139(670), 119–136.
  • Hong, S.-Y. and Dudhia, J. 2012. Next-generation numerical weather prediction: bridging parameterization, explicit clouds, and large eddies. Bull. Am. Meteorol. Soc. 93(1), ES6–ES9.
  • Houghton, D. D. and Kasahara, A. 1968. Nonlinear shallow fluid flow over an isolated ridge. Commun. Pure Appl. Math. 21(1), 1–23.
  • Houze, R. A. Jr 1993a. Cloud Dynamics, Vol. 53, Academic Press, San Diego.
  • Houze, R. A. Jr 1993b. Cumulus Dynamics. In: Cloud Dynamics. Academic Press, San Diego, chap 7.
  • Houze, R. A. Jr 1993c. Orographic Clouds. In: Cloud Dynamics. Academic Press, Cloud Dynamics, San Diego, chap 12.
  • Kalnay, E. 2003. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge.
  • Kent, T. 2016. An idealised fluid model of Numerical Weather Prediction: dynamics and data assimilation. Ph.D. thesis, University of Leeds. Available online at http://etheses.whiterose.ac.uk/17269/
  • Kent, T. 2017. modRSW\_EnKF: an idealised convective-scale forecast-assimilation framework. GitHub. Available online at https://github.com/tkent198/modRSW\_EnKF
  • LeVeque, R. J. 2002. Finite-Volume Methods for Hyperbolic Problems Cambridge University Press, Cambridge.
  • Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141.
  • Lorenz, E. N. 1986. On the existence of a slow manifold. J. Atmos. Sci. 43(15), 1547–1558.
  • Lorenz, E. N. 1996. Predictability: a problem partly solved. Proceedings ECMWF Seminar on predictability, ECMWF, Vol. 1, Shinfield Park, Reading, United Kingdom, 1–18.
  • Lorenz, E. N. 2005. Designing chaotic models. J. Atmos. Sci. 62, 1574–1587.
  • Lorenz, E. N. and Emanuel, K. A. 1998. Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci. 55(3), 399–414.
  • Markowski, P. and Richardson, Y. 2011a. Convection initiation. Mesoscale Meteorology in Midlatitudes. Vol. 2, John Wiley & Sons, Hoboken, chap. 7.
  • Markowski, P. and Richardson, Y. 2011b. Mesoscale Meteorology in Midlatitudes, Vol. 2 John Wiley & Sons, Hoboken.
  • Markowski, P. and Richardson, Y. 2011c. Organization of isolated convection. Mesoscale Meteorology in Midlatitudes. Vol. 2, John Wiley & Sons, Hoboken, chap. 8.
  • Neef, L. J., Polavarapu, S. M. and Shepherd, T. G. 2006. Four-dimensional data assimilation and balanced dynamics. J. Atmos. Sci. 63(7), 1840–1858.
  • Neef, L. J., Polavarapu, S. M. and Shepherd, T. G. 2009. A low-order model investigation of the analysis of gravity waves in the ensemble Kalman filter. J. Atmos. Sci. 66(6), 1717–1734.
  • Parrett, C. and Cullen, M. 1984. Simulation of hydraulic jumps in the presence of rotation and mountains. Q. J. R. Meteorol. Soc. 110(463), 147–165.
  • Rhebergen, S., Bokhove, O. and van der Vegt, J. 2008. Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations. J. Comput. Phys. 227(3), 1887–1922.
  • Salman, H., Kuznetsov, L., Jones, C. and Ide, K. 2006. A method for assimilating Lagrangian data into a shallow-water-equation ocean model. Mon. Weather Rev. 134(4), 1081–1101.
  • Stevens, B. 2005. Atmospheric moist convection. Annu. Rev. Earth Planet. Sci. 33, 605–643.
  • Stewart, L., Dance, S. and Nichols, N. 2013. Data assimilation with correlated observation errors: experiments with a 1-d shallow water model. Tellus A 65, 19546.
  • Subramanian, A. C., Hoteit, I., Cornuelle, B., Miller, A. J. and Song, H. 2012. Linear vs. nonlinear filtering with scale-selective corrections for balanced dynamics in a simple atmospheric model. J. Atmos. Sci. 69(11), 3405–3419.
  • Tang, Y., Lean, H. W. and Bornemann, J. 2013. The benefits of the Met Office variable resolution NWP model for forecasting convection. Meteorol. Appl. 20(4), 417–426.
  • Toro, E. 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer-Verlag, Berlin.
  • Vetra-Carvalho, S., Dixon, M., Migliorini, S., Nichols, N. K. and Ballard, S. P. 2012. Breakdown of hydrostatic balance at convective scales in the forecast errors in the Met Office Unified Model. Q. J. R. Meteorol. Soc. 138(668), 1709–1720.
  • Whitham, G. B. 1974. Linear and Nonlinear Waves. John Wiley & Sons, New York.
  • Würsch, M. and Craig, G. 2014. A simple dynamical model of cumulus convection for data assimilation research. Meteorol. Z. 23(5), 483–490.
  • Žagar, N., Gustafsson, N. and Källén, E. 2004. Dynamical response of equatorial waves in four-dimensional variational data assimilation. Tellus A 56(1), 29–46.
  • Zeitlin, V. 2007. Introduction: fundamentals of rotating shallow water model in the geophysical fluid dynamics perspective. In: Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances (ed. V. Zeitlin). Elsevier, Amsterdam, chap. 2.
  • Zerroukat, M. and Allen, T. 2015. A moist Boussinesq shallow water equations set for testing atmospheric models. J. Comput. Phys. 290, 55–72.
  • Zhu, K., Navon, I. M. and Zou, X. 1994. Variational data assimilation with a variable resolution finite-element shallow-water equations model. Mon. Weather Rev. 122(5), 946–965.