2,302
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

The role of snow in the thickening processes of lake ice at Lake Abashiri, Hokkaido, Japan

, &
Article: 1391655 | Received 22 Dec 2016, Accepted 03 Oct 2017, Published online: 17 Nov 2017

References

  • Andreas, E. L. and Makshtas, A. P. 1985. Energy exchange over Antarctic sea ice in the spring. J. Geophys. Res. 90(C4), 7199–7212.
  • Benson, B. J., Magnuson, J. J., Jensen, O. P., Card, V. M., Hodgkins, G. and co-authors. 2012. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Change 112, 299–323.
  • Bonan, G. B. 1995. Sensitivity of a GCM simulation to inclusion of inland water surfaces. J. Clim. 8, 2691–2704.
  • Dai, A. 2006. Recent climatology, variability, and trends in global surface humidity. J. Clim. 19, 3589–3606.
  • Duguay, C. R., Prowse, T. D., Bonsal, B. R., Brown, R. D., Lacroix, M. P. and co-authors. 2006. Recent trends in Canadian lake ice cover. Hydrol. Process. 20, 781–801.
  • Ellis, A. W. and Johnson, J. J. 2004. Hydroclimatic analysis of snowfalls trends associated with the North American Great Lakes. J. Hydrometeorol. 5, 471–486.
  • Grenfell, T. C. and Maykut, G. A. 1977. The optical properties of ice and snow in the Arctic basin. J. Glaciol. 18(80), 445–463.
  • IPCC. 2013. Climate Change 2013. The physical science basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (eds. T. F. Stocker, D. Qin, G. K. Plattner, M. M. B. Tignor, S. K. Allen and co-authors) Cambridge, UK, Cambridge University Press.
  • Kawamura, T. and Ono, N. 1978. A study of ice on Lake Tofutsu. Low Temp. Sci. Ser. A 37, 85–91. (In Japanese with English summary).
  • Kirillin, G., Leppäranta, M., Terzhevik, A., Granin, N., Bernhardt, J. and co-authors. 2012. Physics of seasonally ice-covered lakes: a review. Aquat. Sci. 74, 659–682. DOI: 10.1007/s00027-012-0279-y.
  • Leppäranta, M. 1983. A growth model for black ice, snow ice and snow thickness in subarctic basins. Nordic Hydrol. 14, 59–70.
  • Leppäranta, M. and Kosloff, P. 2000. The structure and thickness of Lake Pääjärvi ice. Geophysica 36, 233–248.
  • Leppäranta, M. 2009. Modelling the formation and decay of lake ice. In: The Impact of Climate Change on European Lakes (ed. D.G. George) Aquatic Ecology Series, Vol. 4, Springer, Berlin Heidelberg, pp. 63–83.
  • Leppäranta, M. 2015. Structure and properties of lake ice. Freezing of Lakes and the Evolution of their Ice Cover. Springer, Berlin Heidelberg, pp. 51–90. DOI: 10.1007/978-3-642-29081-7_3.
  • Livingstone, D. M., Adrian, R., Blenckner, T., Geoge, D. G. and Weyhenmeyer, G. A. 2010. Lake ice phenology. In: The Impact of Climate Change on European Lakes (ed. D. G. George) Aquatic Ecology Series, Vol. 4, Springer, Berlin, Heidelberg, pp. 51–61. DOI: 10.1007/978-90-481-2945-4_4.
  • Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone, D. M. and co-authors. 2000. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289, 1743–1746. DOI:10.1126/science.289.5485.1743.
  • Maksym, T. and Jeffries, M. O. 2000. A one-dimensional percolation model of flooding and snow ice formation on Antarctic sea ice. J. Geophys. Res. 105, 26313–26331.
  • Maykut, G. A. and Untersteiner, N. 1971. Some results from a time-dependent, thermodynamic model of sea ice. J. Geophys. Res. 76, 1550–1575.
  • Maykut, G. A. 1982. Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res. 87(C10), 7971–7984.
  • Michel, B. and Ramseier, R. O. 1971. Classification of river and lake ice. Can. Geotech. J. 8(1), 36–45.
  • Muguruma, J. and Kikuchi, K. 1963. Lake ice investigation at Peters Lake, Alaska. J. Glaciol. 4, 689–708.
  • Ohata, Y., Toyota, T. and Shiraiwa, T. 2016. Lake ice formation processes and thickness evolution at Lake Abashiri, Hokkaido, Japan. J. Glaciol. 62(233), 563–578. DOI: 10.1017/jog.2016.57.
  • Omstedt, A. 1990. A coupled one-dimensional sea ice–ocean model applied to a semi-enclosed basin. Tellus 42A, 568–582.
  • Perovich, D. K. 1998. The optical properties of sea ice. In: Physics of Ice-Covered Seas (ed. M. Leppäranta). Helsinki University Press, Helsinki, pp. 195–230.
  • Pirazzini, R., Vihma, T., Granskog, M. A. and Cheng, B. 2006. Surface albedo measurements over sea ice in the Baltic Sea during the spring snowmelt period. Ann. Glaciol. 44, 7–14.
  • Rouse, W. R., Binyamin, J., Blanken, P. D., Bussieres, N., Duguay, C. R. and co-authors. 2008. The Influence of Lakes on the Regional Energy and Water Balance of the Central Mackenzie River Basin. In: Cold Region Atmospheric and Hydrogic Studies. The Mackenzie GEWEX Experience (ed. M. K. Woo), Vol 1. Springer, Berlin, Heidelberg, pp. 309–325. DOI: 10.1007/978-3-540-73936-4_18.
  • Saloranta, T. M. 2000. Modeling the evolution of snow, snow ice and ice in the Baltic Sea. Tellus 52A, 93–108.
  • Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W. and Dee, D. P. 2010. Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res. Atmos. 115, D01110. DOI: 10.1029/2009JD012442.
  • Thiery, W., Davin, E. L., Panitz, H.-J., Demuzere, M., Lhermitte, S. and co-author. 2015. The impact of the African Great Lakes on the regional climate. J. Clim. 28, 4061–4085.
  • Toyota, T., Massom, R., Tateyama, K., Tamura, T. and Fraser, A. D. 2011. Properties of snow overlying the sea ice off East Antarctica in late winter 2007. Deep Sea Res. II 58(9–10), 1137–1148.
  • Toyota, T., Takatsuji, S., Tateyama, K., Naoki, K. and Ohshima, K. 2007. Properties of sea ice and overlying snow in the Southern Sea of Okhotsk. J. Oceanogr. 63, 393–411.
  • Toyota, T. and Wakatsuchi, M. 2001. Characteristics of the surface heat budget during the ice-growth season in the southern Sea of Okhotsk. Ann. Glaciol. 33, 230–236.
  • Vavrus, S. J., Wynne, R. H. and Foley, J. A. 1996. Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model. Limnol. Oceanogr. 41(5), 822–831.
  • Weyhenmeyer, G. A., Meili, M. and Livingstone, D. M. 2004. Nonlinear temperature response of lake ice breakup. Geophys. Res. Lett. 31, L07203. DOI: 10.1029/2004GL019530.
  • Willett, K. M., Williams, C. N. Jr, Dunn, R. J. H., Thorne, P. W., Bell, S. and co-authors. 2012. HadlSDH: an updated land surface specific humidity product for climate monitoring. Clim. Past D 8, 5133–5180.
  • Williams, G., Layman, K. L. and Stefan, H. G. 2004. Dependence of lake ice covers on climatic, geographic and bathymetric variables. Cold Reg. Sci. Technol. 40, 145–164.
  • Yang, Y., Leppäranta, M., Cheng, B. and Li, Z. 2012. Numerical modelling of snow and ice thickness in Lake Vanajavesi, Finland. Tellus 64A, 1–12.
  • Yen, Y. C. 1981. Review of thermal properties of snow, ice, and sea ice. Cold Reg. Res. Eng. Lab. Rep. 81–10, 1–27.