3,166
Views
6
CrossRef citations to date
0
Altmetric
Research Article

On the role of convective available potential energy (CAPE) in tropical cyclone intensification

&
Pages 1-18 | Received 19 Dec 2017, Accepted 18 Jan 2018, Published online: 08 Mar 2018

References

  • Betts, A. K. 1986. A new convective adjustment scheme. Part I: observational and theoretical basis. Q. J. R. Meteorol. Soc. 112, 677–691.
  • Bogner, P. B., Barnes, G. M. and Franklin, J. L. 2000. Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting 15, 192–207.10.1175/1520-0434(2000)015<0192:CIASFS>2.0.CO;2
  • Bryan, G. H. and Fritsch, J. M. 2002. A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev. 130, 2917–2928.10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2
  • Bryan, G. H. and Rotunno, R. 2009. Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci. 66, 3042–3060.10.1175/2009JAS3038.1
  • Bui, H. H., Smith, R. K., Montgomery, M. T. and Peng, J. 2009. Balanced and unbalanced aspects of tropical cyclone intensification. Q.J.R. Meteorol. Soc. 135, 1715–1731.
  • Camp, J. P. and Montgomery, M. T. 2001. Hurricane maximum intensity: Past and present. J. Atmos. Sci. 129, 1704–1717.
  • Charney, J. G. and Eliassen, A. 1964. On the growth of the hurricane depression. J. Atmos. Sci. 21, 68–75.10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2
  • Craig, G. C. and Gray, S. L. 1996. CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci. 53, 3528–3540.10.1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2
  • Dengler, K. and Reeder, M. J. 1997. The effects of convection and baroclinicity on the motion of tropical-cyclone-like vortices. Q. J. R. Meteorol. Soc. 123, 699–725.10.1002/(ISSN)1477-870X
  • DeMaria, M. and Pickle, J. D. 1988. A simplified system of equations for simulation of tropical cyclones. J. Atmos. Sci. 45, 1542–1554.10.1175/1520-0469(1988)045<1542:ASSOEF>2.0.CO;2
  • DeMaria, M. and Schubert, W. H. 1984. Experiments with a spectral tropical cyclone model. J. Atmos. Sci. 41, 901–924.10.1175/1520-0469(1984)041<0901:EWASTC>2.0.CO;2
  • Donelan, M. A., Haus, B. K., Reul, N., Plant, W. J., Stiassnie, M. and co-authors. 2004. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 31, 102.10.1029/2004GL019460
  • Dunion, J. P. 2011. Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate 24, 893–908.10.1175/2010JCLI3496.1
  • Emanuel, K. A. 1986. An air-sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J. Atmos. Sci. 43, 585–604.10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
  • Emanuel, K. A. 1994. Atmospheric Convection. Oxford University Press, New York, NY.
  • Emanuel, K. A. 1997. Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci. 54, 1014–1026.10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2
  • Emanuel, K. A. 2012. Self-stratification of tropical cyclone outflow. Part II: implications for storm intensification. J. Atmos. Sci. 69, 988–996.10.1175/JAS-D-11-0177.1
  • Fairall, C., Bradley, E., Hare, J., Grachev, A. and Edson, J. 2003. Bulk parameterization of air–sea fluxes: updates and verification for the COARE algorithm. J. Clim. 16, 571–591.10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2
  • Frank, W. M. 1977. The structure and energetics of the tropical cyclone I. Storm structure. Mon. Wea. Rev. 105, 1119–1135.10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2
  • Frisius, T. 2006. Surface-flux-induced tropical cyclogenesis within an axisymmetric atmospheric balanced model. Q. J. R. Meteorol. Soc. 132, 2603–2623.10.1256/qj.06.03
  • Frisius, T. and Hasselbeck, T. 2009. The effect of latent cooling processes in tropical cyclone simulations. Q. J. R. Meteorol. Soc. 135, 1732–1749.10.1002/qj.v135:644
  • Frisius, T. and Lee, M. 2016. The impact of gradient wind imbalance on tropical cyclone intensification within Ooyama’s three-layer model. J. Atmos. Sci. 73, 3659–3679.
  • Frisius, T. and Schönemann, D. 2012. An extended model for the potential intensity of tropical cyclones. J. Atmos. Sci. 69, 641–661.10.1175/JAS-D-11-064.1
  • Gray, S. L. and Craig, G. C. 1998. A simple theoretical model for the intensification of tropical cyclones and polar lows. Q. J. R. Meteorol. Soc. 124, 919–947.10.1002/(ISSN)1477-870X
  • Hendricks, E. A., Montgomery, M. T. and Davis, C. A. 2004. The role of ‘vortical’ hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci. 61, 1209–1232.10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2
  • La Seur, N. E. and Hawkins, H. F. 1963. An analysis of hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev. 91, 694–709.10.1175/1520-0493(1963)091<0694:AAOHCB>2.3.CO;2
  • Molinari, J., Romps, D. M., Vollaro, D. and Nguyen, L. 2012. CAPE in tropical cyclones. J. Atmos. Sci. 69, 2452–2463.10.1175/JAS-D-11-0254.1
  • Montgomery, M. T., Sang, N. V., Smith, R. K. and Persing, J. 2009. Do tropical cyclones intensify by WISHE? Q. J. R. Meteorol. Soc. 135, 1697–1714.10.1002/qj.v135:644
  • Montgomery, M. T. and Smith, R. K. 2014. Paradigms for tropical cyclone intensification. Aust. Meteorol. Oceanogr. 64, 37–66.10.22499/2.00000
  • Montgomery, M. T., Persing, J. and Smith, R. K. 2015. Putting to rest WISHE-ful misconceptions for tropical cyclone intensification. J. Adv. Model. Earth Syst. 7, 92–109.10.1002/2014MS000362
  • Montgomery, M. T. and Smith, R. K. 2017. Recent developments in the fluid dynamics of tropical cyclones. Annu. Rev. Fluid Mech. 49, 541–574.10.1146/annurev-fluid-010816-060022
  • Morrison, H., Curry, J. and Khvorostyanov, V. 2005. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: description. J. Atmos. Sci. 62, 1665–1677.
  • Ooyama, K. 1969. Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 26, 3–40.10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2
  • Persing, J. and Montgomery, M. T. 2005. Is environmental CAPE important in the determination of maximum possible hurricane intensity? J. Atmos. Sci. 62, 542–550.10.1175/JAS-3370.1
  • Persing, J., Montgomery, M. T., McWilliams, J. C. and Smith, R. K. 2013. Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys. 13, 12299–12341.10.5194/acp-13-12299-2013
  • Rotunno, R. and Emanuel, K. A. 1987. An air–sea interaction theory for tropical cyclones. Part II: evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci. 44, 542–561.10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2
  • Schönemann, D. and Frisius, T. 2012. Dynamical system analysis of a low-order tropical cyclone model. Tellus A 64, 15817.10.3402/tellusa.v64i0.15817
  • Schecter, D. A. 2011. Evaluation of a reduced model for investigating hurricane formation from turbulence. Q. J. R. Meteorol. Soc. 137, 155–178.10.1002/qj.729
  • Schecter, D. A. and Dunkerton, T. J. 2009. Hurricane formation in diabatic Ekman turbulence. Q. J. R. Meteorol. Soc. 135, 823–838.10.1002/qj.v135:641
  • Schubert, W. H. and Hack, J. J. 1983. Transformed Eliassen balanced vortex model. J. Atmos. Sci. 40, 1571–1583.10.1175/1520-0469(1983)040<1571:TEBVM>2.0.CO;2
  • Shapiro, L. J. and Willoughby, H. E. 1982. The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci. 39, 378–394, 571.
  • Smith, R. K. 1997. On the theory of CISK. Q. J. R. Meteorol. Soc. 123, 407–418.10.1002/(ISSN)1477-870X
  • Smith, R. K. and Montgomery, M. T. 2008. Balanced boundary layers used in hurricane models. Q. J. R. Meteorol. Soc. 134, 1385–1395.10.1002/qj.v134:635
  • Van Sang, N., Smith, R. K. and Montgomery, M. T. 2008. Tropical cyclone intensification and predictability in three dimensions. Q. J. R. Meteorol. Soc. 134, 563–582.10.1002/(ISSN)1477-870X
  • Wang, Y. and Xu, J. 2010. Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci. 67, 97–116.10.1175/2009JAS3143.1
  • Willoughby, H. 1988. The dynamics of the tropical cyclone core. Aust. Met. Mag. 36, 183–191.
  • Zehnder, J. A. 2001. A comparison of convergence- and surface-flux-based convective parameterizations with applications to tropical cyclogenesis. J. Atmos. Sci. 58, 283–301.10.1175/1520-0469(2001)058<0283:ACOCAS>2.0.CO;2
  • Zhu, H., Smith, R. K. and Ulrich, W. 2001. A minimal three-dimensional tropical cyclone model. J. Atmos. Sci. 58, 1924–1944.10.1175/1520-0469(2001)058<1924:AMTDTC>2.0.CO;2