805
Views
2
CrossRef citations to date
0
Altmetric
Research Article

‘The Equator–Pole grid system’: an overset grid system for the sphere, with an optimal uniformity property

Pages 1-14 | Received 12 Jan 2018, Accepted 28 Sep 2018, Published online: 29 Jan 2019

References

  • Bao, L., Nair, R. D. and Tufo, H. M. 2014. A mass and momentum flux-form higher-order discontinuous Galerkin shallow water model on the cubed-sphere. J. Comput. Phys. 271, 224–243. doi:10.1016/j.jcp.2013.11.033.
  • Browning, B. L., Hack, J. J. and Swarztrauber, P. N. 1989. A comparison of three numerical methods for solving differential equations on the sphere. Mon. Wea. Rev. 117, 1058–1075. doi:10.1175/1520-0493(1989)117<1058:ACOTNM>2.0.CO;2.
  • Chen, C., Li, X., Shen, X. and Xiao, F. 2014. Global shallow water models based on multi-moment constrained finite volume method and three quasi-uniform spherical grids. J. Comput. Phys. 271, 191–223. doi:10.1016/j.jcp.2013.10.026.
  • Clancy, C. and Pudykiewics, J. A. 2013. On the use of exponential time integration methods in atmospheric models. Tellus A 65, 20898. doi:10.3402/tellusa.v65i0.20898.
  • Gates, W. L. and Riegel, A. 1963. A study of numerical errors in the integration of barotropic flow on a spherical grid. JGR 67, 406–423.
  • Gaudreault, S. and Pudykiewicz, J. A. 2016. An efficient exponential time integration method for the numerical solution if the shallow water equations on the sphere. J. Comput. Phys. 322, 827–848. doi:10.1016/j.jcp.2016.07.012.
  • Giraldo, F. X. 2006. High-order triangle-based discontinuous Galerkin methods for hyperbolic equations on a rotating sphere. J. Comput. Phys. 214, 447–465. doi:10.1016/j.jcp.2005.09.029.
  • Henshaw, W. D. and Schwendeman, D. W. 2006. Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow. J. Comput. Phys. 216, 744–779. doi:10.1016/j.jcp.2006.01.005.
  • Ii, S. and Xiao, F. 2010. A global shallow water model using high order constrained finite volume method and icosahedral grid. J. Comput. Phys. 229, 1774–1796. doi:10.1016/j.jcp.2009.11.008.
  • Kageyama, A. and Sato, T. 2004. The Yin-Yang grid: An overset grid in spherical geometry. Geochem. Geophys. Geosyst. 5, Q09005.
  • Kurihara, Y. 1965. Integration of the primitive equations on a spherical grid. Mon. Wea. Rev. 93, 399–415. doi:10.1175/1520-0493(1965)093<0399:NIOTPE>2.3.CO;2.
  • Lanser, D., Blom, J. G. and Verwer, J. G. 2000. Spatial discretisation of the shallow water equations in spherical geometry using Osher’s scheme. J. Comput. Phys. 165, 542–565. doi:10.1006/jcph.2000.6632.
  • Lauritzen, P. H., Nair, R. D. and Ullrich, P. A. 2010. A conservative semi-Lagrangian multi-tracer scheme (CSLAM) on a cubed-sphere grid. J. Comput. Phys. 229, 1401–1424. doi:10.1016/j.jcp.2009.10.036.
  • Läuter, M., Giraldo, F. X., Handorf, D. and Dethloff, K. 2008. A discontinuous Galerkin method for the shallow water equations using spherical triangular coordinates. J. Comput. Phys. 227, 10226–10243. doi:10.1016/j.jcp.2008.08.019.
  • Nair, R. D. and Jablonowski, C. 2008. Moving vortices on the sphere: A test case for horizontal advection problems. Mon. Wea. Rev. 136, 699–711. doi:10.1175/2007MWR2105.1.
  • Nair, R. D., Thomas, S. J. and Loft, R. D. 2005. A discontinuous Galerkin transport scheme on the cubed sphere. Mon. Wea. Rev. 133, 814–828. doi:10.1175/MWR2890.1.
  • Peixoto, P. S. and Barros, S. R. M. 2013. Analysis of grid imprinting on geodesic spherical icosahedral grids. J. Comput. Phys. 237, 61–78. doi:10.1016/j.jcp.2012.11.041.
  • Phillips, N. A. 1959. Numerical integration of the primitive equations on the hemisphere. Mon. Wea. Rev. 87, 333–345. doi:10.1175/1520-0493(1959)087<0333:NIOTPE>2.0.CO;2.
  • Pudykiewics, J. A. 2011. On numerical solution of the shallow water equations with chemical reactions on icoshedral geodesic grid. J. Comput. Phys. 230, 1956–1991. doi:10.1016/j.jcp.2010.11.045.
  • Putman, W. M. and Lin, S.-J. 2007. Finite-volume transport on various cubed-sphere grids. J. Comput. Phys. 227, 55–78. doi:10.1016/j.jcp.2007.07.022.
  • Qaddouri, A. and Lee, V. 2011. The Canadian global environmental multiscale model on the Yin-Yang grid system. Qjr. Meteorol. Soc. 137, 1913–1926. doi:10.1002/qj.873.
  • Robert, A. 1982. A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J. Meteorol. Soc. Jpn. 60, 319–325. doi:10.2151/jmsj1965.60.1_319.
  • Ronchi, C., Iacono, R. and Paolucci, P. S. 1996. The cubed sphere: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys. 124, 93–114. doi:10.1006/jcph.1996.0047.
  • Sadourny, R. 1972. Conservative finite-differencing of the primitive equations on quasi-uniform spherical grids. Mon. Wea. Rev. 100, 136–144. doi:10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2.
  • Staniforth, A. and Thuburn, J. 2012. Horizontal grids for global weather and climate prediction models: a review. Qjr. Meteorol. Soc. 138, 1–26. doi:10.1002/qj.958.
  • Starius, G. 1977a. Composite mesh difference methods for elliptic boundary value problems. Numer. Math. 28, 243–258. doi:10.1007/BF01394455.
  • Starius, G. 1977b. Constructing orthogonal curvilinear meshes by solving initial value problems. Numer. Math. 28, 25–48. doi:10.1007/BF01403855.
  • Starius, G. 1980. On composite mesh difference methods for hyperbolic differential equations. Numer. Math. 35, 241–255. doi:10.1007/BF01396411.
  • Starius, G. 2014. A solution to the pole problem for the shallow water equations on a sphere. TWMS JPAM. 5, 152–170.
  • Ullrich, P. A., Jablonowski, C. and van Leer, B. 2010. High-order finite-volume methods for the shallow-water equations on the sphere. J. Comput. Phys. 229, 6104–6134. doi:10.1016/j.jcp.2010.04.044.
  • Volkov, E. A. 1968. The method of composite meshes for finite and infinite regions with piecewise smooth boundaries. Proc. Steklov Inst. Math. 96, 145–185.
  • Williamson, D. L. 1968. Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus. 20, 642–653.
  • Williamson, D. L. 2007. The evolution of dynamical cores for global atmospheric model. JMSJ. 85B, 241–269. doi:10.2151/jmsj.85B.241.
  • Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R. and Swarztrauber, P. N. 1992. A standard test set for numerical approximation to the shallow water equations in spherical geometry. J. Comput. Phys. 102, 211–224. doi:10.1016/S0021-9991(05)80016-6.