723
Views
5
CrossRef citations to date
0
Altmetric
Research Article

A dynamical–system description of precipitation over the tropics and the midlatitudes

, , & ORCID Icon
Pages 1-17 | Received 14 Aug 2020, Accepted 01 Nov 2020, Published online: 23 Nov 2020

References

  • Ambaum, M. H. P. 2010. Significance tests in climate science. J. Clim. 23, 5927–5932. doi:10.1175/2010JCLI3746.1
  • Ambaum, M. H. P. and Novak, L. 2014. A nonlinear oscillator describing storm track variability. Q. J. R. Meteorol. Soc. 140, 2680–2684. doi:10.1002/qj.2352
  • Arakawa, A. and Schubert, W. H. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci. 31, 674–701. doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
  • Barkiđija, S. and Fuchs, Ž. 2013. Precipitation correlation between convective available potential energy, convective inhibition and saturation fraction in middle latitudes. Atmos. Res. 124, 170–180. doi:10.1016/j.atmosres.2012.12.010
  • Brown, R. G. and Zhang, C. 1997. Variability of midtropospheric moisture and its effect on cloud–top height distribution during TOAG COARE. J. Atmos. Sci. 54, 2760–2774. doi:10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2
  • Ciesielski, P. E., Hartten, L. and Johnson, R. H. 1997. Impacts of merging profiler and rawinsonde winds on TOGA COARE analyses. J. Atmos. Oceanic Technol. 14, 1264–1279. doi:10.1175/1520-0426(1997)014<1264:IOMPAR>2.0.CO;2
  • Ciesielski, P. E., Johnson, R. H., Haertel, P. T. and Wang, J. 2003. Corrected TOGA COARE sounding humidity data: impact on diagnosed properties of convection and climate over the warm pool. J. Clim. 16, 2370–2384. doi:10.1175/2790.1
  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P. and co-authors. 2011. The ERA–interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc.137,554–597.
  • Emanuel, K. A., Neelin, J. D. and Bretherton, C. S. 1994. On large–scale circulation in convective atmospheres. Q. J. R. Meteorol. Soc. 120, 1111–1143. doi:10.1002/qj.49712051902
  • Feudale, L. and Manzato, A. 2014. Cloud-to-ground lightning distribution and its relationship with orography and anthropogenic emissions in the Po valley. J. Appl. Meteorol. Climatol. 53, 2651–2670. doi:10.1175/JAMC-D-14-0037.1
  • Glinton, M. R., Gray, S. L., Chagnon, J. M. and Morcrette, C. J. 2017. Modulation of precipitation by conditional symmetric instability release. Atmos. Res. 185, 186–201. doi:10.1016/j.atmosres.2016.10.013
  • Gray, S. L., Martínez–Alvarado, O., Baker, L. H. and Clark, P. A. 2011. Conditional symmetric instability in stingjet storms. Q. J. R. Meteorol. Soc. 137, 1482–1500. doi:10.1002/qj.859
  • Hawcroft, M. K., Shaffrey, L. C., Hodges, K. I. and Dacre, H. F. 2012. How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett. 39, L24809. doi:10.1029/2012GL053866.
  • Hawcroft, M. K., Shaffrey, L. C., Hodges, K. I. and Dacre, H. F. 2016. Can climate models represent the precipitation associated with extratropical cyclones? Clim. Dyn. 47, 679–695. doi:10.1007/s00382-015-2863-z
  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hornyi, A. and co-authors. 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 730, 1999–2049. doi.org/10.1002/qj.3803
  • Isotta, F. A., Frei, C., Weilguni, V., Perčec Tadić, M., Lassègues, P. and co-authors. 2014. The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Climatol. 34, 1657–1675. doi:10.1002/joc.3794
  • Johnson, R. H., and P. E. Ciesielski. 2000. Rainfall and radiative heating rates from TOGA–COARE atmospheric budgets. J. Atmos. Sci. 57, 1497–1514. doi:10.1175/1520-0469(2000)057<1497:RARHRF>2.0.CO;2
  • Kållberg, P. 2011. Forecast drift in ERA–Interim. ECMWF, Reading, UK.
  • Manzato, A. 2003. A climatology of instability indices derived from Friuli Venezia Giulia soundings, using three different methods. Atmos. Res. 67-68, 417–454. doi:10.1016/S0169-8095(03)00058-9
  • de Leeuw, J., Methven, J. and Blackburn, M. 2015. Evaluation of ERA–Interim reanalysis precipitation products using England and Wales observations. Q. J. R. Meteorol. Soc. 141, 798–806. doi:10.1002/qj.2395
  • Manzato, A. 2005. The use of sounding-derived indices for a neural network short-term thunderstorm forecast. Wea. Forecast. 20, 896–917. doi:10.1175/WAF898.1
  • Manzato, A. 2007. Sounding-derived indices for neural network based short-term thunderstorm and rainfall forecasts. Atmos. Res. 83, 349–365. doi:10.1016/j.atmosres.2005.10.021
  • Manzato, A. 2013. Hail in NE Italy: a neural network ensemble forecast using sounding–derived indices. Wea. Forecast. 28, 3–28. doi:10.1175/WAF-D-12-00034.1
  • Manzato, A., Cicogna, A. and Pucillo, A. 2016. 6-hour maximum rain in Friuli Venezia Giulia: climatology and ECMWF-based forecasts. Atmos. Res. 169, 465–484. doi:10.1016/j.atmosres.2015.07.013
  • Manzato, A. and Morgan, G. Jr., 2003. Evaluating the sounding instability with the lifted parcel theory. Atmos. Res. 67-68, 455–473. doi:10.1016/S0169-8095(03)00059-0
  • Mapes, B. E., Ciesielski, P. E. and Johnson, R. H. 2003. Sampling errors in rawinsondes–array budgets. J. Atmos. Sci. 60, 2697–2714. doi:10.1175/1520-0469(2003)060<2697:SEIRB>2.0.CO;2
  • Mapes, B. E., Milliff, R. and Morzel, J. 2009. Composite life cycle of maritime tropical mesoscale convective systems in scatterometer and microwave satellite observations. J. Atmos. Sci. 66, 199–208. doi:10.1175/2008JAS2746.1
  • Mapes, B. E., Tulich, S., Lin, J.-L. and Zuidema, P. 2006. The mesoscale convection life cycle: building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans 42, 3–29. doi:10.1016/j.dynatmoce.2006.03.003
  • Molinari, J., Romps, D. M., Vollaro, D. and Nguyen, L. 2012. CAPE in tropical cyclones. J. Atmos. Sci. 69, 2452–2463. doi:10.1175/JAS-D-11-0254.1
  • Novak, L., Ambaum, M. H. P. and Tailleux, R. 2017. Marginal stability and predator-prey behaviour within storm tracks. Q. J. R. Meteorol. Soc. 143, 1421–1433. doi:10.1002/qj.3014
  • Pavan, V., Antolini, G., Barbiero, R., Berni, N., Brunier, F. and co-authors. 2019. High resolution climate precipitation analysis for north-central Italy, 1961–2015. Clim. Dyn. 52, 3435–3453. doi:10.1007/s00382-018-4337-6
  • Pavliotis, G. A. and Stuart, A. M. 2007. Multiscale Methods: Averaging and Homogenization. Springer, Berlin, 307 pp.
  • Poelman, D. R., Schulz, W., Diendorfer, G. and Bernardi, M. 2016. The European lightning location system EUCLID - Part 2: observations. Nat. Hazards Earth Syst. Sci. 16, 607–616. doi:10.5194/nhess-16-607-2016
  • Raymond, D. J. 1995. Regulation of moist convection over the warm tropical oceans. J. Atmos. Sci. 52, 3945–3959. doi:10.1175/1520-0469(1995)052<3945:ROMCOT>2.0.CO;2
  • Rennó, N. O. and Ingersoll, A. P. 1996. Natural convection as a heat engine: a theory for CAPE. J. Atmos. Sci. 53, 572–585. doi:10.1175/1520-0469(1996)053<0572:NCAAHE>2.0.CO;2
  • Rickenbach, T. M. and Rutledge, S. A. 1998. Convection in TOGA COARE: horizontal scale, morphology, and rainfall production. J. Atmos. Sci. 55, 2715–2729. doi:10.1175/1520-0469(1998)055<2715:CITCHS>2.0.CO;2
  • Sherwood, S. C. 1999. Convective precursors and predictability in the Tropical Western Pacific. Mon. Wea. Rev. 127, 2977–2991. doi:10.1175/1520-0493(1999)127<2977:CPAPIT>2.0.CO;2
  • Sherwood, S. C. and Wahrlich, R. 1999. Observed evolution of tropical deep convection event and their environment. Mon. Wea. Rev. 127, 1777–1795. doi:10.1175/1520-0493(1999)127<1777:OEOTDC>2.0.CO;2
  • Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W. and Dee, D. P. 2010. Low–frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res. 115, D01110. doc:10.1029/2009JD012442.
  • Smith, R. K. and Montgomery, M. T. 2012. Observations of the convective environment in developing and non-developing tropical distrubances. Q. J. R. Meteorol. Soc. 138, 1721–1739. doi:10.1002/qj.1910
  • Sobel, A. H., Yuter, S. E., Bretherton, C. S. and Kiladis, G. N. 2004. Large–scale meteorology of shallow cumulus convection. J. Atmos. Sci. 60, 1201–1219.
  • Sueki, K. and Niino, H. 2016. Toward better assessment of tornado potential in typhoons: significance of considering entrainment effects for CAPE. Geophys. Res. Lett. 43, 12,597–604. doi:10.1002/2016GL070349
  • Yano, J.-I. and Ambaum, M. H. P. 2017. Moist static energy: Definition, reference constants, a conservation law, and effects on buoyancy. Q. J. R. Meteorol. Soc. 143, 2727–2734. doi:10.1002/qj.3121
  • Yano, J.-I. and Mukougawa, H. 1992. The attractor dimension of a quasi-geostrophic two-layer system. Geophys. Astrophys. Fluid Dyn. 65, 77–91. doi:10.1080/03091929208225240
  • Yano, J.-I. and Plant, R. S. 2012a. Finite departure from convective quasi-equilibrium: Periodic cycle and discharge-recharge mechanism. Q. J. R. Meteorol. Soc. 138, 626–637. doi:10.1002/qj.957
  • Yano, J.-I. and Plant, R. S. 2012b. Interactions between shallow and deep convection under a finite departure from convective quasi-equilibrium. J. Atmos. Sci. 69, 3463–3470. doi:10.1175/JAS-D-12-0108.1
  • Yano, J. I., Bister, M., Fuchs, Z., Gerard, L., Phillips, V. and co-authors. 2013. Phenomenology of convection-parameterization closure. Atmos. Chem. Phys. 13, 4111–4131. doi:10.5194/acp-13-4111-2013 doi:10.5194/acp-13-4111-2013
  • Yano, J.-I., Chaboureau, J.-P. and Guichard, F. 2005. A generalization of CAPE into potential–energy convertibility. Q. J. R. Meteorol. Soc. 131, 861–875. doi:10.1256/qj.03.188
  • Zhang, Y. and Klein, S. A. 2010. Mechanism affecting the transition from shallow to deep convection over land: inferences form observations of the diurnal cycle collected at the ARM Southern Great Plains site. J. Atmos. Sci. 67, 2943–2959. doi:10.1175/2010JAS3366.1