2,705
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Estimation of observation errors for large-scale atmospheric inversion of CO2 emissions from fossil fuel combustion

, , , , , , , , & show all
Article: 1325723 | Received 22 Dec 2016, Accepted 27 Apr 2017, Published online: 16 May 2017

References

  • Andres, R. J., Marland, G., Fung, I. and Matthews, E. 1996. A 1°×1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990. Global Biogeochem. Cycles 10, 419–429.
  • Andres, R. J., Boden, T. A., Bréon, F. M., Ciais, P., Davis, S. and co-authors. 2012. A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences 9, 1845–1871.
  • Andres, R. J., Boden, T. A. and Higdon, D. 2014. A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission. Tellus B 66, 23616.
  • Ballantyne, A. P., Andres, R., Houghton, R., Stocker, B. D., Wanninkhof, R. and co-authors. 2015. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty. Biogeosciences 12, 2565–2584.
  • Basu, S., Miller, J. B. and Lehman, S. 2016. Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: observation system simulations. Atmos. Chem. Phys. Discuss. 2016, 1–34.
  • Berrisford, P., Dee, D., Fielding, K., Fuentes, M., Kallberg, P. and co-authors. 2009. The ERA-Interim Archive. ERA Report Series, Reading, pp. 1–16.
  • Bocquet, M., Wu, L. and Chevallier, F. 2011. Bayesian design of control space for optimal assimilation of observations. Part I: consistent multiscale formalism. Q. J. Roy. Meteor. Soc. 137, 1340–1356.
  • Bousquet, P., Peylin, P., Ciais, P., Le Quéré, C., Friedlingstein, P. and co-authors. 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290, 1342–1346.
  • Bozhinova, D., van der Molen, M. K., Krol, M. C., van der Laan, S., Meijer, H. A. J. and co-authors. 2013. Simulating the integrated Δ14CO2 signature from anthropogenic emissions over Western Europe. Atmos. Chem. Phys. Discuss. 13, 30611–30652.
  • Bréon, F. M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Remy, I. and co-authors. 2015. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements. Atmos. Chem. Phys. 15, 1707–1724.
  • Brioude, J., Petron, G., Frost, G. J., Ahmadov, R., Angevine, W. M. and co-authors. 2012. A new inversion method to calculate emission inventories without a prior at mesoscale: application to the anthropogenic CO2 emission from Houston, Texas. J. Geophys. Res. 117, D05312.
  • Broquet, G., Chevallier, F., Rayner, P., Aulagnier, C., Pison, I. and co-authors. 2011. A European summertime CO2 biogenic flux inversion at mesoscale from continuous in situ mixing ratio measurements. J. Geophys. Res. 116, D23303.
  • Chen, H., Winderlich, J., Gerbig, C., Hoefer, A., Rella, C. W. and co-authors. 2010. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique. Atmos. Meas. Tech. 3, 375–386.
  • Chevallier, F., Fisher, M., Peylin, P., Serrar, S., Bousquet, P. and co-authors. 2005. Inferring CO2 sources and sinks from satellite observations: method and application to TOVS data. J. Geophys. Res. 110, D24309.
  • Chevallier, F., Ciais, P., Conway, T. J., Aalto, T., Anderson, B. E. and co-authors. 2010. CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. J. Geophys. Res. 115, D21307.
  • Chevallier, F. and O’Dell, C. W. 2013. Error statistics of Bayesian CO2 flux inversion schemes as seen from GOSAT. Geophys. Res. Lett. 40, 1252–1256.
  • Ciais, P., Paris, J. D., Marland, G., Peylin, P., Piao, S. L. and co-authors. 2010. The European carbon balance. Part 1: fossil fuel emissions. Global Change Biol. 16, 1395–1408.
  • Engelen, R. J. 2002. On error estimation in atmospheric CO2 inversions. J. Geophys. Res. 107, 4635.
  • Enting, I. G., Trudinger, C. M., Francey, R. J. and Granek, H. 1993. Synthesis inversion of atmospheric CO2 using the GISS tracer transport model. CSIRO Aust. Div. Atmos. Res. Tech. Pap. 29, 1–44.
  • Gamnitzer, U., Karstens, U., Kromer, B., Neubert, R. E. M., Meijer, H. A. J. and co-authors. 2006. Carbon monoxide: a quantitative tracer for fossil fuel CO2? J. Geophys. Res. 111, D22302.
  • García, M. Á., Sánchez, M. L. and Pérez, I. A. 2010. Synoptic weather patterns associated with carbon dioxide levels in Northern Spain. Sci. Total Environ. 408, 3411–3417.
  • Geels, C., Gloor, M., Ciais, P., Bousquet, P., Peylin, P. and co-authors. 2007. Comparing atmospheric transport models for future regional inversions over Europe – Part 1: mapping the atmospheric CO2 signals. Atmos. Chem. Phys. 7, 3461–3479.
  • Gerbig, C., Lin, J. C., Wofsy, S. C., Daube, B. C., Andrews, A. E. and co-authors. 2003. Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms. J. Geophys. Res.: Atmos. 108, n/a–n/a.
  • Graven, H. D. and Gruber, N. 2011. Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2. Atmos. Chem. Phys. 11, 12339–12349.
  • Gregg, J. S., Andres, R. J. and Marland, G. 2008. China: emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys. Res. Lett. 35, L08806.
  • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D. and co-authors. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626–630.
  • Gurney, K. R., Mendoza, D. L., Zhou, Y., Fischer, M. L., Miller, C. C. and co-authors. 2009. High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ. Sci. Technol. 43, 5535–5541.
  • Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F. and co-authors. 2006. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dynam. 27, 787–813.
  • Hsueh, D. Y., Krakauer, N. Y., Randerson, J. T., Xu, X., Trumbore, S. E. and co-authors. 2007. Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophys. Res. Lett. 34, L02816.
  • IPCC. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories Institutefor Global Environmental Strategies, Hayama.
  • Kadygrov, N., Broquet, G., Chevallier, F., Rivier, L., Gerbig, C. and co-authors. 2015. On the potential of ICOS atmospheric CO2 measurement network for the estimation of the biogenic CO2 budget of Europe. Atmos. Chem. Phys. Discuss. 15, 14221–14273.
  • Kaminski, T., Rayner, P. J., Heimann, M. and Enting, I. G. 2001. On aggregation errors in atmospheric transport inversion. J. Geophys. Res. 106, 4703–4715.
  • Lauvaux, T., Pannekoucke, O., Sarrat, C., Chevallier, F., Ciais, P. and co-authors. 2009. Structure of the transport uncertainty in mesoscale inversions of CO 2 sources and sinks using ensemble model simulations. Biogeosciences 6, 1089–1102.
  • Lauvaux, T., Uliasz, M., Sarrat, C., Chevallier, F., Bousquet, P. and co-authors. 2008. Mesoscale inversion: first results from the CERES campaign with synthetic data. Atmos. Chem. Phys. 8, 3459–3471.
  • Law, R., Peters, W., Rödenbeck, C., Aulagnier, C., Baker, I. and co-authors. 2008. TransCom model simulations of hourly atmospheric CO2: experimental overview and diurnal cycle results for 2002. Global Biogeochem. Cycles 22, n/a–n/a.
  • Levin, I. and Karstens, U. 2008. Quantifying Fossil Fuel CO2 over Europe. In: The Continental-Scale Greenhouse Gas Balance of Europe (eds. A. J. Dolman, A. Freibauer, and R. Valentini), Springer, New York, pp. 53–72.
  • Levin, I., Kromer, B., Schmidt, M. and Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophys. Res. Lett. 30, 2194.
  • Levin, I., Hammer, S., Kromer, B. and Meinhardt, F. 2008. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Sci. Total Environ. 391, 211–216.
  • Levin, I., Hammer, S., Eichelmann, E. and Vogel, F. R. 2011. Verification of greenhouse gas emission reductions: the prospect of atmospheric monitoring in polluted areas. Philos. Trans. Series A, Math. Phys. Eng. Sci. 369, 1906–1924.
  • Levin, I. M. K. O. W. W. 1980. The effect of anthropogenic CO2 and 14C sources on the distribution of 14C in the atmosphere. Radiocarbon 22, 379–391.
  • Lin, J. C. and Gerbig, C. 2005. Accounting for the effect of transport errors on tracer inversions. Geophys. Res. Lett. 32, L01802.
  • Lin, J. C., Gerbig, C., Wofsy, S. C., Daube, B. C., Matross, D. M. and co-authors. 2006. What have we learned from intensive atmospheric sampling field programmes of CO2? Tellus B 58, 331–343.
  • Liu, Z., Guan, D., Wei, W., Davis, S. J., Ciais, P. and co-authors. 2015. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524, 335–338.
  • Lorenc, A. C. 1986. Analysis methods for numerical weather prediction. Q. J. Roy. Meteor. Soc. 112, 1177–1194.
  • Macknick, J. 2009. Energy and Carbon Dioxide Emission Data Uncertainties. IIASA Interim Report IR-09-32. International Institute for Applied Systems Analysis, Laxenburg.
  • Marland, G. 2008. Uncertainties in accounting for CO2 from fossil fuels. J. Ind. Ecol. 12, 136–139.
  • McKain, K., Wofsy, S. C., Nehrkorn, T., Eluszkiewicz, J., Ehleringer, J. R. and co-authors. 2012. Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. In: Proc. Nat. Acad. Sci. USA 109, 8423–8428.
  • Miller, S. M., Hayek, M. N., Andrews, A. E., Fung, I. and Liu, J. 2015. Biases in atmospheric CO2 estimates from correlated meteorology modeling errors. Atmos. Chem. Phys. 15, 2903–2914.
  • Naegler, T. and Levin, I. 2006. Closing the global radiocarbon budget 1945–2005. J. Geophys. Res. 111, D12311.
  • Newman, S., Jeong, S., Fischer, M. L., Xu, X., Haman, C. L. and co-authors. 2013. Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring 2010. Atmos. Chem. Phys. 13, 4359–4372.
  • Niwa, Y., Machida, T., Sawa, Y., Matsueda, H., Schuck, T. J. and co-authors. 2012. Imposing strong constraints on tropical terrestrial CO2 fluxes using passenger aircraft based measurements. J. Geophys. Res. 117, D11303.
  • Oak Ridge National Laboratory (ORNL): LandScan Global Population 2007 Database. 2015. Online at: http://www.ornl.gov/sci/landscan/.
  • Oda, T. and Maksyutov, S. 2011. A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos. Chem. Phys. 11, 543–556.
  • Olivier, J. G. J., Van Aardenne, J. A., Dentener, F. J., Pagliari, V., Ganzeveld, L. N. and co-authors. 2005. Recent trends in global greenhouse gas emissions: regional trends 1970–2000 and spatial distributionof key sources in 2000. Environ. Sci. 2, 81–99.
  • Pacala, S. W., Breidenich, C., Brewer, P. G., Fung, I. Y., Gunson, M. R. and co-authors. 2010. Verifying greenhouse gas emissions: methods to support international climate agreements. National Academies Press, Washington, DC.
  • Parazoo, N. C., Denning, A. S., Kawa, S. R., Corbin, K. D., Lokupitiya, R. S. and co-authors. 2008. Mechanisms for synoptic variations of atmospheric CO2 in North America, South America and Europe. Atmos. Chem. Phys. 8, 7239–7254.
  • Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J. and co-authors. 2007. An atmospheric perspective on North American carbon dioxide exchange: carbon tracker. Proc. Nat. Acad. Sci. USA 104, 18925–18930.
  • Peylin, P., Rayner, P. J., Bousquet, P., Carouge, C., Hourdin, F. and co-authors. 2005. Daily CO2 flux estimates over Europe from continuous atmospheric measurements: 1, inverse methodology. Atmos. Chem. Phys. 5, 3173–3186.
  • Peylin, P., Houweling, S., Krol, M. C., Karstens, U., Rödenbeck, C. and co-authors. 2011. Importance of fossil fuel emission uncertainties over Europe for CO2 modeling: model intercomparison. Atmos. Chem. Phys. 11, 6607–6622.
  • Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R. and co-authors. 2013. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosci. Discuss. 10, 5301–5360.
  • Pillai, D., Gerbig, C., Ahmadov, R., Rödenbeck, C., Kretschmer, R. and co-authors. 2011. High-resolution simulations of atmospheric CO2 over complex terrain – representing the Ochsenkopf mountain tall tower. Atmos. Chem. Phys. 11, 7445–7464.
  • Rödenbeck, C., Houweling, S., Gloor, M. and Heimann, M. 2003. CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919–1964.
  • Randerson, J. T., Enting, I. G., Schuur, E. A. G., Caldeira, K. and Fung, I. Y. 2002. Seasonal and latitudinal variability of troposphere Δ14CO2: Post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochem. Cycles 16, 59-51–59-19.
  • Ray, J., Yadav, V., Michalak, A. M., van Bloemen Waanders, B. and McKenna, S. A. 2014. A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions. Geosci. Model Dev. 7, 1901–1918.
  • Rivier, L., Ciais, P., Hauglustaine, D. A., Bakwin, P., Bousquet, P. and co-authors. 2006. Evaluation of SF6, C2Cl4, and CO to approximate fossil fuel CO2 in the Northern Hemisphere using a chemistry transport model. J. Geophys. Res. 111, D16311.
  • Schmidt, H., Derognat, C., Vautard, R. and Beekmann, M. 2001. A comparison of simulated and observed ozone mixing ratios for the summer of 1998 in Western Europe. Atmos. Environ. 35, 6277–6297.
  • Shiga, Y. P., Michalak, A. M., Gourdji, S. M., Mueller, K. L. and Yadav, V. 2014. Detecting fossil fuel emissions patterns from subcontinental regions using North American in situ CO2 measurements. Geophys. Res. Lett. 41, 4381–4388.
  • Tarantola, A. 2005. Inverse Problem Theory and Methods for Model Parameter Estimation. Siam, Philadelphia.
  • Thoning, K. W., Tans, P. P. and Komhyr, W. D. 1989. Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985. J. Geophys. Res. 94, 8549–8565.
  • Turnbull, J. C., Keller, E. D., Norris, M. W. and Wiltshire, R. M. 2016. Independent evaluation of point source fossil fuel CO2 emissions to better than 10%. Proc. Nat. Acad. Sci. 113, 10287–10291.
  • Turnbull, J., Miller, J., Lehman, S., Hurst, D., Peters, W. and co-authors. 2009. Spatial distribution of Δ 14 CO 2 across Eurasia: measurements from the TROICA-8 expedition. Atmos. Chem. Phys. 9, 175–187.
  • Turnbull, J. C., Tans, P. P., Lehman, S. J., Baker, D., Conway, T. J. and co-authors. 2011. Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia. J. Geophys. Res.: Atmos. 116, D24306.
  • Turnbull, J. C., Keller, E. D., Baisden, T., Brailsford, G., Bromley, T. and co-authors 2014. Atmospheric measurement of point source fossil CO2 emissions. Atmos. Chem. Phys. 14, 5001–5014.
  • Ummel, K. 2012. CARMA revisited: an updated database of carbon dioxide emissions from power plants worldwide. Center for Global Development Working Paper, 304, Washington, DC.
  • Vogel, F. R., Hammer, S., Steinhof, A., Kromer, B. and Levin, I. 2010. Implication of weekly and diurnal 14C calibration on hourly estimates of CO-based fossil fuel CO2 at a moderately polluted site in southwestern Germany. Tellus B 62, 512–520.
  • Vogel, F. R., Levin, I. and Worthy, D. 2013. Implications for deriving regional fossil fuel CO2 estimates from atmospheric observations in a hot spot of nuclear power plant 14CO2 emissions. Radiocarbon 55, 1556–1572.
  • Wang, R., Tao, S., Ciais, P., Shen, H. Z., Huang, Y. and co-authors. 2013. High-resolution mapping of combustion processes and implications for CO2 emissions. Atmos. Chem. Phys. 13, 5189–5203.
  • WMO: Report of the 17th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2013). 2013. Beijing, China, 10–13 June 2013, GAW Report No. 213. Online at: http://www.wmo.int/pages/prog/arep/gaw/gaw-reports.html.
  • Wu, L., Bocquet, M., Lauvaux, T., Chevallier, F., P., Y. and co-authors. 2011. Optimal representation of source-sink fluxes for mesoscale carbon dioxide inversion with synthetic data. J. Geophys. Res. 116, D21304.