869
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Long-term variations of the mole fraction and carbon isotope ratio of atmospheric methane observed at Ny-Ålesund, Svalbard from 1996 to 2013Footnote

, , , &
Article: 1380497 | Received 13 Apr 2017, Accepted 12 Sep 2017, Published online: 06 Oct 2017

References

  • Aoki, S., Nakazawa, T., Murayama, S. and Kawaguchi, S. 1992. Measurements of atmospheric methane at the Japanese Antarctic Station, Syowa. Tellus B 44, 273–281. DOI:10.1034/j.1600-0889.1992.t01-3-00005.x.
  • Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C. and co-authors. 2013. Atmospheric CH4 in the first decade of the 21st century: inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. J. Geophys. Res. 118, 7350–7369. DOI:10.1002/jgrd.50480.
  • Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A. and co-authors. 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 433, 439–443. DOI:10.1038/nature05132.
  • CMAP Precipitation Data provided by the NOAA/OAR/ESRL PSD, Boulder, CO, Online at: http://www.esrl.noaa.gov/psd/
  • CPC Soil Moisture Data provided by the NOAA/OAR/ESRL PSD, Boulder, CO. Online at: http://www.esrl.noaa.gov/psd/
  • Dalsøren, S. B., Myhre, C. L., Myhre, G., Gomez-Pelaez, A. J., Søvde, O. A. and co-authors. 2016. Atmospheric methane evolution the last 40 years. Atmos. Chem. Phys. 16, 3099–3126. DOI:10.5194/acp-16-3099-2016.
  • Dlugokencky, E. J., Houweling, S., Bruhwiler, L., Masarie, K. A., Lang, P. M. and co-authors. 2003. Atmospheric methane levels off: temporary pause or a new steady state? Geophys. Res. Lett. 30, 1992. DOI:10.1029/2003GL018126.
  • Dlugokencky, E. J., Bruhwiler, L., White, J. W. C., Emmons, L. K., Novelli, P. C. and co-authors 2009. Observational constraints on recent increases in the atmospheric CH4 burden. Geophys. Res. Lett. 36, L18803. DOI:10.1029/2009GL039780.
  • Dlugokencky, E. J., Lang, P. M., Crotwell, A. M., Mund, J. W., Crotwell, M. J. and co-authors. 2016. Atmospheric methane dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1983–2015, Version: 2016–07–07, Online at: ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/flask/surface/
  • Giglio, L., Randerson, J. T. and van der Werf, G. R. 2013. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. 118, 317–328. DOI:10.1002/jgrg.20042.
  • Hausmann, P., Sussmann, R. and Smale, D. 2016. Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): top–down estimate from ethane and methane column observations. Atmos Chem. Phys. 16, 3227–3244. DOI:10.5194/acp-16-3227-2016.
  • Helmig, D., Rossabi, S., Hueber, J., Tans, P., Montzka, S. A. and co-authors. 2016. Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production. Nat. Geosci. 9, 490–495. DOI:10.1038/NGEO2721.
  • Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G. and co-authors. 2013. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823. DOI:10.1038/ngeo1955.
  • Lassey, K. R., Lowe, D. C. and Manning, M. R. 2000. The trend in atmospheric methane δ13C and implications for isotopic constraints on the global methane budget. Global Biogeochem. Cycles 14, 41–49.10.1029/1999GB900094
  • Matthews, E. and Fung, I. 2003. LBA Regional Wetlands Data Set, 1-Degree Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, DOI:10.3334/ORNLDAAC/688. Online at: http://www.daac.ornl.gov
  • McNorton, J., Chipperfield, M. P., Gloor, M., Wilson, C., Feng, W. and co-authors. 2016. Role of OH variability in the stalling of the global atmospheric CH4 growth rate from 1999 to 2006. Atmos. Chem. Phys. 16, 7943–7956. DOI:10.5194/acp-16-7943-2016.
  • Montzka, S. A., Krol, M., Dlugokencky, E., Hall, B., Jöckel, P. and co-authors. 2011. Small interannual variability of global atmospheric hydroxyl. Science 331, 67–69. DOI:10.1126/science.1197640.
  • Morimoto, S., Aoki, S., Nakazawa, T. and Yamanouchi, T. 2006. Temporal variations of the carbon isotopic ratio of atmospheric methane observed at Ny Ålesund, Svalbard from 1996 to 2004. Geophys. Res. Lett. 33, L01807. DOI:10.1029/2005GL024648.
  • Morimoto, S., Aoki, S. and Nakazawa, T. 2009. High precision measurements of carbon isotopic ratio of atmospheric methane using a continuous flow mass spectrometer. Antarctic Record 53, 1–8.
  • Nakazawa, T., Ishizawa, M., Higuchi, K. and Trivett, N. 1997. Two curve fitting methods applied to CO2 flask data. Environmetrics 8, 197–218.10.1002/(ISSN)1099-095X
  • Nisbet, E. G., Dlugokencky, E. J., Manning, M. R., Lowry, D., Fisher, R. E. and co-authors. 2016. Rising atmospheric methane: 2007–2014 growth and isotopic shift. Global Biogeochem. Cycles 30, 1356–1370. DOI:10.1002/2016GB005406.
  • Reinsel, G. C., Weatherhead, E. C., Tiao, G. C., Miller, A. J., Nagatani, R. M. and co-authors. 2002. On detection of turnaround and recovery in trend for ozone. J. Geophys. Res. 107. DOI: 10.1029/2001JD000500.
  • Patra, P. K., Krol, M. C., Montzka, S. A., Arnold, T., Atlas E. L. and co-authors. 2014. Observational evidence for interhemispheric hydroxyl-radical parity. Nature 513, 219–223. DOI: 10.1038/nature13721.
  • Rice, A. L., Butenhoff, C. L., Teama, D. G., Röger, F. H., Khalil, M. A. K. and co-authors. 2016. Atmospheric methane isotopic record favors fossil sources flat in 1980s and 1990s with recent increase. PNAS 113, 10791–10796. DOI:10.1073/pnas.1522923113.
  • Rigby, M., Prinn, R. G., Fraser, P. J., Simmonds, P. G., Langenfelds, R. L. and co-authors. 2008. Renewed growth of atmospheric methane. Geophys. Res. Lett. 35, L22805. DOI:10.1029/2008GL036037.
  • Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young, D. and co-authors. 2017. Role of atmospheric oxidation in recent methane growth. PNAS 114, 5373–5377. DOI:10.1073/pnas.1616426114.
  • Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P. and co-authors. 2016. The Global Methane Budget 2000–2012. Earth Syst. Sci. Data 8, 697–751. DOI:10.5194/essd-8-697-2016.
  • Schaefer, H., Mikaloff Fletcher, S. E., Veidt, C., Lassey, K. R., Brailsford, G. W. and co-authors. 2016. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4. Science 352, 80–84. DOI:10.1126/science.aad2705.
  • Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M. P., Miller, J. B., Etiope, G. and co-authors. 2016. Upward revision of global fossil fuel methane emissions based on isotope database. Nature 538, 88–91. DOI:10.1038/nature19797.
  • Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J., Foreman-Fowler, M. and co-authors. 2000. Three-dimensional climatological distribution of tropospheric OH: update and evaluation. J. Geophys. Res. 105, 8931–8980.10.1029/1999JD901006
  • Turner, A. J., Frankenberg, C., Wennberg, P. O. and Jacob, D. J. 2017. Ambiguity in the cause for dacadal trends in atmospheric methane and hydroxyl. PNAS 114, 5367–5372. DOI:10.1073/pnas.1616020114.
  • van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M. and co-authors. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735. DOI:10.5194/acp-10-11707-2010.
  • Voulgarakis, A., Naik, V., Lamarque, J. F., Shindell, D. T., Young, P. J. and co-authors. 2013. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys. 13, 2563–2587. DOI:10.5194/acp-13-2563-2013.
  • Wania, R., Melton, J. R., Hodson, E. L., Poulter, B., Ringeval, B. and co-authors. 2013. Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geosci. Model Dev. 6, 617–641. DOI:10.5194/gmd-6-617-2013.
  • White, J. W. C., Vaughn, B. H. and Michel, S. E. 2015. University of Colorado, Institute of Arctic and Alpine Research (INSTAAR), Stable Isotopic Composition of Atmospheric Methane (13C) from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1998-2014, Version: 2016–04–26, Online at: ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4c13/flask/
  • Whiticar, M. and Schaefer, H. 2007. Constraining past global tropospheric methane budgets with carbon and hydrogen isotope ratios in ice. Phil. Trans. R. Soc. A 365, 1793–1828. DOI:10.1098/rsta.2007.2048.
  • Zhu, Q., Peng, C., Chen, H., Fang, X., Liu, J. and co-authors. 2015. Estimating global natural wetland methane emissions using process modelling: spatio-temporal patterns and contributions to atmospheric methane fluctuations. Global Ecol. Biogeogr. 24, 959–972. DOI:10.1111/geb.12307.