1,164
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Influence of supersaturation on the concentration of ice nucleating particles

, , &
Pages 1-10 | Received 20 Apr 2017, Accepted 16 Mar 2018, Published online: 06 Apr 2018

References

  • Al-Naimi, R. and Saunders, C. P. R. 1985. Measurements of natural deposition and condensation-freezing ice nuclei with a continuous flow chamber. Atmos. Environ. 19, 1871–1882.10.1016/0004-6981(85)90012-5
  • Ardon-Dryer, K., Levin, Z. and Lawson, R. P. 2011. Characteristics of immersion freezing nuclei at the South Pole station in Antarctica. Atmos. Chem. Phys. 11, 4015–4024. DOI:10.519/acp-11-4015/2011.
  • Berezinskiy, N. A. and Stepanov, G. V. 1986. Dependence of the concentration of natural ice-forming nuclei of different size on the temperature and supersaturation. Isvestiya. Atmos. Oceanic Phys. 22, 722–727.
  • Bowdle, D. A., Hobbs, P. V. and Radke, L. F. 1985. Particles in the lower troposphere over the high plains of the United States. Part III: ice nuclei. J. Climate App. Meteor. 24, 1370–1376.10.1175/1520-0450(1985)024<1370:PITLTO>2.0.CO;2
  • Buck, A. L. 1981. New equations for computing vapor pressure and enhancement factor. J. Appl. Meteor. 20, 1527–1532.10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2
  • Connolly, P. J., Möhler, O., Field, P. R., Saathoff, H., Burgess, R. and coauthors. 2009. Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys. 9, 2805–2824.10.5194/acp-9-2805-2009
  • Cooper, W. A. 1986. Ice initiation in nature clouds. In: Precipitation Enhancement – A Scientific Challenge (ed. R. G. Braham Jr). Meteorol. Monogr. 443, 29–32.10.1175/0065-9401-21.43.29
  • Cotton, W. R., Tripoli, G. J., Rauber, R. M. and Mulvihill, E. A. 1986. Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor. 25, 1658–1680.10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2
  • Cziczo, D. J., Froyd, K. D., Gallavardin, S. J., Möhler, O., Benz, S. and coauthors. 2009. Deactivation of ice nuclei due to atmospherically relevant surface coatings. Environ. Res. Lett. 4, 1–9. DOI:10.1088/1748-9326/4/4/044013.
  • DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D. and coauthors. 2010. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA 107, 11217–11222. DOI:10.1073/pnas.0910818107.
  • DeMott, P.J., Rogers, D. C. and Grant, L. W. 1992. Concerning primary ice nuclei concentrations and water supersaturations in the atmosphere. In: Proceedings of the 11th ICCP, Montreal, Vol. 1, pp. 284–287.
  • DeMott, P. K., Sassen, K., Poellot, M. R., Baumgardner, D., Rogers, D. C. and coauthors. 2003. African dust aerosol as atmospheric ice nuclei. Geophys. Res. Lett. 30(14), 1732. DOI:10.1029/2003GL017410.
  • DeMott, P. J., Möhler, O., Stetzer, O., Vali, G., Levin, Z. and coauthors. 2011. Resurgence in ice nuclei measurement research. Bull. Amer. Meteor. Soc. 92, 1623–1635. DOI:10.1175/2011BAMS3119.1.
  • Fletcher, N. H. 1962. The Physics of Rain Clouds. Cambridge University Press, New York, 386 pp.
  • Fukuta, N. 1993. Water supersaturation in convective clouds. Atmos. Res. 30, 105–126.10.1016/0169-8095(93)90043-N
  • Fukuta, N. and Lee, H. J. 1986. A numerical study of the supersaturation field around growing graupel. J. Atmos. Sci. 43, 1833–1843.10.1175/1520-0469(1986)043<1833:ANSOTS>2.0.CO;2
  • Hall, W. D. 1980. A detailed microphysical model within a two-dimensional dynamic framework: model description and preliminary results. J. Atmos. Res. 37, 2486–2507.10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2
  • Hallett, J. and Mossop, S. C. 1974. Production of secondary ice particles during the riming process. Nature 249, 26–28.10.1038/249026a0
  • Heymsfield, A. E. A. 2005. The ice nucleation experiment – Research Plan – Scientific Overview Document. Online at: www.mmm.ucar.edu/events/ice05/images/iCE-SOD-050902.pdf
  • Hiranuma, N., Möhler, O., Yamashita, K., Tajiri, T., Saito, A. and coauthors. 2015. Ice nucleation by cellulose and its potential contribution to ice formation in clouds. Nat. Geosci. 8, 273–277. DOI:10.1038/NGEO2374.
  • Hobbs, P. and Rangno, A. 1990. Rapid development of high particle concentrations in small polar maritime cumuliform clouds. J. Atmos. Sci. 47, 2719–2722.
  • Hoose, C. and Möhler, O. 2012. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys. 12, 9817–9854.10.5194/acp-12-9817-2012
  • Huang, H., Thomas, G. E. and Grainger, R. G. 2010. Relationship between wind speed and aerosol optical depth over remote ocean. Atmos. Chem. Phys. 10, 5943–5950. DOI:10.5194/acp-10-5943.
  • Huffman, P. J. 1973. Supersaturation spectra of AgI and natural ice nuclei. J. Appl. Meteorol. 12, 1080–1082.10.1175/1520-0450(1973)012<1080:SSOAAN>2.0.CO;2
  • Jiang, H., Yin, Y., Yang, L., Yang, S., Su, H. and Chen, K. 2014. The characteristics of atmospheric ice nuclei measured at differential altitudes in the Huangshan Mountains in Southeast China. Adv. Atmos. Sci. 31(2), 396–406. DOI:10.1007/s00376-013-3048-5.
  • Jones, H. M., Flynn, M. J., DeMott, P. J. and Möhler, O. 2011. Manchester Ice Nucleus Counter (MINC) measurements from the 2007 International Workshop on Comparing Ice nucleation Measuring Systems (ICIS-2007). Atmos. Chem. Phys. 11, 53–65. DOI:10.5194/acp-11-53-2011.
  • Kanji, Z. A. and Abbatt, J. P. D. 2010. Ice nucleation onto Arizona test dust at cirrus temperatures: effect of temperature and aerosol size on onset relative humidity. J. Phys. Chem. A 114, 935–941.10.1021/jp908661m
  • Kanji, Z. A., DeMott, P. J., Möhler, O. and Abbatt, J. P. D. 2011. Results from the University of Toronto continuous flow diffusion chamber at ICIS 2007: instrument intercomparison and ice onsets for different aerosol types. Atmos. Chem. Phys. 11, 31–41. DOI:10.5194/acp-11-31-2011.
  • Koehler, K. A., Kreidenweis, S. M., DeMott, P. J., Prenni, A. J. and Petters, M. D. 2007. Potential impact of Owens (dry) Lake dust on warm and cold cloud formation. J. Geophys. Res. 112, D12210. DOI:10.1029/2007JD008413.
  • Koehler, K. A., DeMott, P. J., Kreidenweis, S. M., Popovicheva, O. B., Petters, M. D. and coauthors. 2009. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles. Phys. Chem. Chem. Phys. 11, 7906–7920. DOI:10.1039/b905334b.
  • Kulkarni, G., Dobbie, S. and McQuaid, J. B. 2009. A new thermal gradient ice nucleation diffusion chamber instrument: design, development and first results using Saharan mineral dust. Atmos. Meas. Tech. 2, 221–229. DOI:10.5194/amt-2-221-2009.
  • Kulkarni, G. and Dobbie, S. 2010. Ice nucleation properties of mineral dust particles: determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles. Atmos. Chem. Phys. 10, 95–105.10.5194/acp-10-95-2010
  • Kulkarni, G., Sanders, C., Zhang, K., Liu, X. and Zhao, C. 2014. Ice nucleation of bare and sulfuric acid-coated mineral dust particles and implication for cloud properties. J. Geophys. Res. 119, 9993–10011. DOI:10.1002/2014JD021567.
  • Kupiszewski, P., Zanatta, M., Mertes, S., Vochezer, P., Lloyd, G. and coauthors. 2016. Ice residual properties in mixed-phase clouds at the high-alpine Jungfraujoch site. J. Geophys. Res. Atmos. 121, 12343–12362. DOI:10.1002/2016JD024894.
  • Langer, G. and Rodgers, J. 1975. An experimental study of ice nuclei on membrane filters and other substrata. J. Appl. Meteor. 14, 560–570.10.1175/1520-0450(1975)014<0560:AESOTD>2.0.CO;2
  • Leisner, T., Pander, T., Handmann, P. and Kiselev, A. 2014. Secondary ice processes upon heterogeneous freezing of cloud droplets. In: 14th Conference on Cloud Physics and Atmospheric Radiation, Boston, MA, Amer. Meteor. Soc.
  • López, M. L. and Ávila, E. E. 2013. Measurements of natural deposition ice nuclei in Córdoba, Argentina. Atmos. Chem. Phys. 13, 3111–3119. DOI:10.5194/acp-13-3111-2013.
  • Mason, R. H., Si, M., Chou, C., Irish, V. E., Dickie, R. and coauthors. 2016. Size-resolved measurements of ice-nucleating particles at six locations in North America and one in Europe. Atmos. Chem. Phys. 16, 1637–1651. DOI:10.5194/acp-16-1637-2016.
  • Meyers, M. P., DeMott, P. J. and Cotton, W. R. 1992. New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor. 31, 708–721.10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2
  • Mizuno, H. and Fukuta, N. 1995. Natural ice nucleus measurement under high supersaturation. J. Meteorol. Soc. Jpn 73, 1115–1122.10.2151/jmsj1965.73.6_1115
  • Möhler, O., Nink, A., Saathoff, H., Schaefers, S., Schnaiter, M. and coauthors. 2001. The Karlsruhe aerosol chamber facility AIDA: technical description and first results of homogeneous and heterogeneous ice nucleation experiments. In: Workshop on Ion-aerosol-cloud interactions (IACI) (ed. J. Kirkby), CERN 2001–2007. Geneva, 2001.
  • Möhler, O., Linke, C., Saathoff, H., Schnaiter, M., Wagner, R. and coauthors. 2005. Ice nucleation on flame soot aerosol of different organic carbon content. Meteorol. Z. 14, 477–484.10.1127/0941-2948/2005/0055
  • Niemand, M., Möhler, O., Vogel, B., Vogel, H., Hoose, C. and coauthors. 2012. A particle-surface-area-based parameterization of immersion freezing on desert dust particles. J. Atmos. Sci. 69, 3077–3092. DOI:10.1175/JAS-D-11-0249.1.
  • O’Dowd, C. D. and Smith, M. H. 1993. Physicochemical properties of aerosols over the northeast Atlantic: evidence for wind-speed-related submicron sea-salt aerosol production. J. Geoph. Res. 98, 1137–1149.10.1029/92JD02302
  • Pant, V., Deshpande, C. G. and Kamra, A. K. 2008. On the aerosol number concentration-wind speed relationship during a severe cyclonic storm over south Indian Ocean. J. Geophys. Res. 113, D02206. DOI:10.1029/206JD008035.
  • Prenni, A. J., Harrington, J. Y., Tjernström, M., DeMott, P. J., Avramov, A. and coauthors. 2007. Can ice-nucleating aerosols affect arctic seasonal climate? Bull. Amer. Meteor. Soc. 88, 541–550.10.1175/BAMS-88-4-541
  • Prodi, F., Santachiara, G. and Oliosi, F. 1983. Characterization of aerosols in marine environments (Mediterranean sea, Red sea, and Indian Ocean). J. Geophys. Res. 88, 10957–10968.10.1029/JC088iC15p10957
  • Prospero, J. M., Nees, R. T. and Uematsu, M. 1987. Deposition rate of particulate and dissolved aluminum derived from Saharan dust in precipitation at Miami. Florida. J. Geophys. Res. 92, 14723–14731. DOI:10.1029/JD092iD12p14723.
  • Pruppacher, H. R. and Klett, J. D. 1997. Microphysics of Clouds and Precipitation, Kluwer Academic Publishers, Dordrecht, 954pp.
  • Rangno, A. and Hobbs, P. 1991. Ice particle concentrations and precipitation development in small polar maritime cumuliform clouds. Quart. J. Roy. Meteor. Soc. 117, 207–241.10.1002/(ISSN)1477-870X
  • Rogers, D. C., 1982. Field and laboratory studies on ice nucleation in winter orographic clouds. Ph.D. Dissertation, Dept. of Atmospheric Science, Univ. of Wyoming, Laramie, 161pp.
  • Rogers, D. C. 1988. Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmos. Res. 22, 149–181.10.1016/0169-8095(88)90005-1
  • Rogers, D. C. 1993. Measurements of natural ice nuclei with a continuous flow diffusion chamber. Atmos. Res. 29, 209–228.10.1016/0169-8095(93)90004-8
  • Rogers, D. C., DeMott, P. J. and Grant, L. O. 1994. Concerning primary ice nuclei concentrations and water supersaturations in the atmosphere. Atmos. Res. 33, 151–168.10.1016/0169-8095(94)90018-3
  • Rogers, D. C., DeMott, P. J., Kreidenweis, S. M. and Chen, Y. 2001. A continuous-flow diffusion chamber for airborne measurements of ice nuclei. J. Atmos. Oceanic Technol. 18, 725–741.10.1175/1520-0426(2001)018<0725:ACFDCF>2.0.CO;2
  • Rosinski, J. and Lecinski, A. 1983. Temperature-supersaturation relation for natural sorption ice-forming nuclei. J. Aerosol Sci. 14, 49–63.10.1016/0021-8502(83)90085-X
  • Rosinski, J. and Morgan, G. M. 1988. Ice-forming nuclei in transvaal, Republic of South Africa. J. Aerosol Sci. 19, 531–538.10.1016/0021-8502(88)90205-4
  • Santachiara, G., Di Matteo, L., Prodi, F. and Belosi, F. 2010. Atmospheric particles acting as ice forming nuclei in different size ranges. Atmos. Res. 96, 266–272.10.1016/j.atmosres.2009.08.004
  • Saunders, C. P. R. and Al-Juboory, S. 1988. A dynamic processing chamber for ice nuclei filter samples. In: 12th Inter. Conf. on Atmos. Aerosols and Nucleation, Vienna, pp. 1788–1802.
  • Stein, D. and Georgii, H. W. 1985. Supersaturation spectra of ice nuclei at different locations in Europe and over the North-Atlantic Ocean. J. Réch. Atmos. 19, 179–184.
  • Tobo, Y., Prenni, A. J., DeMott, P. J., Huffman, J. A., McCluskey, C. S. and coauthors. 2013. Biological aerosol particles as a key determinant of ice nuclei populations in a forest ecosystem. J. Geophys. Res. 118, 10100–10110. DOI:10.1002/jgrd.50801.
  • Tositti, L., Brattich, E., Masiol, M., Baldacci, D., Ceccato, D. and coauthors. 2014. Source apportionment of particulate matter in a large city of southeastern Po Valley (Bologna, Italy). Environ. Sci. Pollut. Res. 21, 872–890.10.1007/s11356-013-1911-7
  • Welti, A. and Kanji, Z. A. 2014. Exploring the mechanisms of ice nucleation on kaolinite: from deposition nucleation to condensation freezing. J. Atmos. Sci. 71, 16–36. DOI:10.1175/JAS-D-12-0252.1.
  • Welti, A., Lüönd, F., Stetzer, O. and Lohmann, U. 2009. Influence of particle size on the ice nucleating ability of mineral dusts. Atmos. Chem. Phys. 9, 6705–6715.10.5194/acp-9-6705-2009